python基于plotly实现画饼状图代码实例

yipeiwu_com6年前Python基础

这篇文章主要介绍了python基于plotly实现画饼状图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

代码

import pandas as pd
import numpy as np
import plotly.plotly as py
import plotly.graph_objs as go

path = '/home/v-gazh/PycharmProjects/us_data/limit_code.csv'

df = pd.read_csv(path)
df.set_index(['code'], inplace=True)

# ST 占比
total_count = len(df)
st_count = len(df[df['isST']==1])
print(f'禁投池总数:{total_count}')
print(f'禁投池中ST个数:{st_count}') # f'禁投池中ST个数:{}'

# 成分股占比
sz50_count = len(df[df['isSz50']==1])
print(f'禁投池中上证50个数:{sz50_count}')
hs300_count = len(df[df['isHs300']==1])
print(f'禁投池中沪深300个数:{hs300_count}')
zz500_count = len(df[df['isZz500']==1])
print(f'禁投池中中证500个数:{zz500_count}')

# 退市占比
outdate_count = len(df['outDate'].dropna())
print(f'禁投池中退市股票个数:{outdate_count}')

# 非股票
not_stock = len(df[df['type']!=1])
print(f'禁投池中非股票个数:{not_stock} 【SZ006415 为基金:F006415 | SZ000000 代码错误】')

# 次新股
delta_df = pd.DataFrame((pd.to_datetime(df['date']) - pd.to_datetime(df['ipoDate'])))
new_stock = len(delta_df[delta_df[0] < pd.Timedelta('365 days')]) # 上市不满一年为次新股 
print(f'禁投池中次新股个数:{new_stock}')

# 市值小于30亿的股票
maketValue = len(df[df['maketValue'] < 3000000000])
print(f'市值小于30亿股票个数:{maketValue}')

# 画图
labels = ['股票总数', 'ST股票', '深证50', '沪深300', '中证500', '退市股票', '非股票', '次新股', '小市值']
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

trace = go.Pie(labels=labels, values=values,textfont=dict(size=15),)
py.iplot([trace], filename='basic_pie_chart')

注:上面代码中,起主要作用的主要是

# 画图
labels = ['股票总数', 'ST股票', '深证50', '沪深300', '中证500', '退市股票', '非股票', '次新股', '小市值']
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

trace = go.Pie(labels=labels, values=values,textfont=dict(size=15),)
py.iplot([trace], filename='basic_pie_chart')
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

values 列表里的内容为int数值,对应上面的labels

图示

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

跟老齐学Python之玩转字符串(3)

字符串就是一个话题中心。 给字符串编号 在很多很多情况下,我们都要对字符串中的每个字符进行操作(具体看后面的内容),要准确进行操作,必须做的一个工作就是把字符进行编号。比如一个班里面有5...

老生常谈python的私有公有属性(必看篇)

python中,类内方法外的变量叫属性,类内方法内的变量叫字段。他们的私有公有访问方法类似。 class C: __name="私有属性" def func(self):...

python使用datetime模块计算各种时间间隔的方法

本文实例讲述了python使用datetime模块计算各种时间间隔的方法。分享给大家供大家参考。具体分析如下: python中通过datetime模块可以很方便的计算两个时间的差,dat...

python3中关于excel追加写入格式被覆盖问题(实例代码)

关于python3中的追加写入excel问题,这个问题坑了我几小时,其实加一个参数即可。 因为之前有写好的excel,想追加写入,但是写入后却只有写入后的单元格格式,之前写的完全消失。...

numpy.random.shuffle打乱顺序函数的实现

numpy.random.shuffle 在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数: def gen_data(so...