基于python读取.mat文件并取出信息

yipeiwu_com6年前Python基础

这篇文章主要介绍了基于python读取.mat文件并取出信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

导入所需包

from scipy.io import loadmat

读取.mat文件

随便从下面文件里读取一个:

m = loadmat('H_BETA.mat') # 读出来的 m 是一个dict(字典)数据结构

读出来的m内容:

m:{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Mon Aug 5 17:14:09 2019',
 '__version__': '1.0',
 '__globals__': [],
 'H_BETA': array([[ 0.68508148, 0.36764355, 0.73505849, ..., 0.27600164,
     0.67968929, 0.70506438],
    [ 0.74920812, 1.10949748, 0.47506305, ..., 0.32871445,
     0.61247345, 1.06948844],
    [ 0.83311522, 1.06321302, 0.97364609, ..., 0.85837753,
     0.96296771, 1.46095171],
    ...,
    [    nan,     nan,     nan, ...,     nan,
         nan, -9.04648469],
    [    nan,     nan,     nan, ...,     nan,
         nan,     nan],
    [    nan,     nan,     nan, ...,     nan,
In [29]: m.keys()
Out[29]: dict_keys(['__header__', '__version__', '__globals__', 'H_BETA'])

取出.mat里所需信息

.mat 文件里的数据结构是 dict ,所以取值要按照 key:value 的形式:

In [30]: m['H_BETA']
Out[30]:
array([[ 0.68508148, 0.36764355, 0.73505849, ..., 0.27600164,
     0.67968929, 0.70506438],
    [ 0.74920812, 1.10949748, 0.47506305, ..., 0.32871445,
     0.61247345, 1.06948844],
    [ 0.83311522, 1.06321302, 0.97364609, ..., 0.85837753,
     0.96296771, 1.46095171],
    ...,
    [    nan,     nan,     nan, ...,     nan,
        nan, -9.04648469],
    [    nan,     nan,     nan, ...,     nan,
        nan,     nan],
    [    nan,     nan,     nan, ...,     nan,
        nan,     nan]])

In [31]: type(m['H_BETA'])
Out[31]: numpy.ndarray

预处理数据

上面读出来的数据是 ndarray 类型,为了方便数据的展示,我们可以将其转换为,pandas的DataFrame:

In [32]: import pandas as pd
In [33]: df = pd.DataFrame(m['H_BETA'])
In [34]: df.head()
Out[34]:
    1     2     3     4     5     6     7     8     9     10  
 0.685081 0.367644 0.735058 0.085046 0.104332 0.560731 0.350219 0.758185 0.303823 0.114022 0.452877 
 0.749208 1.109497 0.475063 0.896100 1.117772 0.611356 0.662669 0.603077 0.863930 0.756870 0.725808 
 0.833115 1.063213 0.973646 0.935061 0.631670 0.916800 0.662993 0.543231 0.671558 1.027954 0.526402 
 0.488906 0.932741 0.956622 0.573116 0.893764 0.987304 0.380807 1.211157 0.550213 0.898408 1.153289 
 0.440694 0.503209 0.509693 0.477054 0.344717 -0.054662 1.124213 0.344906 0.612898 0.217625 -0.129715 

[5 rows x 2111 columns]

如此,数据就比较规整了,是保存成文件,还是做其他处理,就by yourself啦!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

如何利用Python开发一个简单的猜数字游戏

如何利用Python开发一个简单的猜数字游戏

前言 本文介绍如何使用Python制作一个简单的猜数字游戏。 游戏规则 玩家将猜测一个数字。如果猜测是正确的,玩家赢。如果不正确,程序会提示玩家所猜的数字与实际数字相比是“大(high)...

python生成器用法实例详解

本文实例讲述了python生成器用法。分享给大家供大家参考,具体如下: 1. 生成器 利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实...

windows下安装python paramiko模块的代码

1.安装python  windows版本好:python-2.5.1.msi2.安装pycrypto windows版本号:pycrypto-2.0.1.win32-py2....

Python按钮的响应事件详解

Python按钮的响应事件详解

import sys from PyQt5 import QtWidgets from PyQt5.QtWidgets import QMainWindow from test im...

python自定义函数实现一个数的三次方计算方法

python自定义函数实现一个数的三次方计算方法

python自定义函数在运行时,最初只是存在内存中,只有调用时才会触发运行。 def cube_count(a): if is_number(a): return a**...