Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例

yipeiwu_com5年前Python基础

本文实例讲述了Python使用gluon/mxnet模块实现的mnist手写数字识别功能。分享给大家供大家参考,具体如下:

import gluonbook as gb
from mxnet import autograd,nd,init,gluon
from mxnet.gluon import loss as gloss,data as gdata,nn,utils as gutils
import mxnet as mx
net = nn.Sequential()
with net.name_scope():
  net.add(
    nn.Conv2D(channels=32, kernel_size=5, activation='relu'),
    nn.MaxPool2D(pool_size=2, strides=2),
    nn.Flatten(),
    nn.Dense(128, activation='sigmoid'),
    nn.Dense(10, activation='sigmoid')
  )
lr = 0.5
batch_size=256
ctx = mx.gpu()
net.initialize(init=init.Xavier(), ctx=ctx)
train_data, test_data = gb.load_data_fashion_mnist(batch_size)
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate' : lr})
loss = gloss.SoftmaxCrossEntropyLoss()
num_epochs = 30
def train(train_data, test_data, net, loss, trainer,num_epochs):
  for epoch in range(num_epochs):
    total_loss = 0
    for x,y in train_data:
      with autograd.record():
        x = x.as_in_context(ctx)
        y = y.as_in_context(ctx)
        y_hat=net(x)
        l = loss(y_hat,y)
      l.backward()
      total_loss += l
      trainer.step(batch_size)
    mx.nd.waitall()
    print("Epoch [{}]: Loss {}".format(epoch, total_loss.sum().asnumpy()[0]/(batch_size*len(train_data))))
if __name__ == '__main__':
  try:
    ctx = mx.gpu()
    _ = nd.zeros((1,), ctx=ctx)
  except:
    ctx = mx.cpu()
  ctx
  gb.train(train_data,test_data,net,loss,trainer,ctx,num_epochs)

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

对Python 除法负数取商的取整方式详解

python除法负数商的取整方式与C++不同 python: 5 / -2 = -3 若想和C++行为相同,可以使用 int(operator.truediv(num1, num2...

django基于cors解决跨域请求问题详解

一 同源策略 同源策略(Same origin policy)是一种约定,它是浏览器最核心也最基本的安全功能,如果缺少了同源策略,则浏览器的正常功能可能都会受到影响。可以说Web是构建...

Python数据可视化教程之Matplotlib实现各种图表实例

Python数据可视化教程之Matplotlib实现各种图表实例

前言 数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图、柱状图、线图等图表制作是一个数据分析师必备的技能。Python有两个比较出色的图表制作框架,分别是M...

pytorch中tensor的合并与截取方法

pytorch中tensor的合并与截取方法

合并: torch.cat(inputs=(a, b), dimension=1) e.g. x = torch.cat((x,y), 0) 沿x轴合并 截取: x[:,...

pytorch 数据处理:定义自己的数据集合实例

数据处理 版本1 #数据处理 import os import torch from torch.utils import data from PIL import Image im...