pytorch制作自己的LMDB数据操作示例

yipeiwu_com6年前Python基础

本文实例讲述了pytorch制作自己的LMDB数据操作。分享给大家供大家参考,具体如下:

前言

记录下pytorch里如何使用lmdb的code,自用

制作部分的Code

code就是ASTER里数据制作部分的代码改了点,aster_train.txt里面就算图片的完整路径每行一个,图片同目录下有同名的txt,里面记着jpg的标签

import os
import lmdb # install lmdb by "pip install lmdb"
import cv2
import numpy as np
from tqdm import tqdm
import six
from PIL import Image
import scipy.io as sio
from tqdm import tqdm
import re
def checkImageIsValid(imageBin):
 if imageBin is None:
  return False
 imageBuf = np.fromstring(imageBin, dtype=np.uint8)
 img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
 imgH, imgW = img.shape[0], img.shape[1]
 if imgH * imgW == 0:
  return False
 return True
def writeCache(env, cache):
 with env.begin(write=True) as txn:
  for k, v in cache.items():
   txn.put(k.encode(), v)
def _is_difficult(word):
 assert isinstance(word, str)
 return not re.match('^[\w]+$', word)
def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True):
 """
 Create LMDB dataset for CRNN training.
 ARGS:
   outputPath  : LMDB output path
   imagePathList : list of image path
   labelList   : list of corresponding groundtruth texts
   lexiconList  : (optional) list of lexicon lists
   checkValid  : if true, check the validity of every image
 """
 assert(len(imagePathList) == len(labelList))
 nSamples = len(imagePathList)
 env = lmdb.open(outputPath, map_size=1099511627776)#最大空间1048576GB
 cache = {}
 cnt = 1
 for i in range(nSamples):
  imagePath = imagePathList[i]
  label = labelList[i]
  if len(label) == 0:
   continue
  if not os.path.exists(imagePath):
   print('%s does not exist' % imagePath)
   continue
  with open(imagePath, 'rb') as f:
   imageBin = f.read()
  if checkValid:
   if not checkImageIsValid(imageBin):
    print('%s is not a valid image' % imagePath)
    continue
  #数据库中都是二进制数据
  imageKey = 'image-%09d' % cnt#9位数不足填零
  labelKey = 'label-%09d' % cnt
  cache[imageKey] = imageBin
  cache[labelKey] = label.encode()
  if lexiconList:
   lexiconKey = 'lexicon-%09d' % cnt
   cache[lexiconKey] = ' '.join(lexiconList[i])
  if cnt % 1000 == 0:
   writeCache(env, cache)
   cache = {}
   print('Written %d / %d' % (cnt, nSamples))
  cnt += 1
 nSamples = cnt-1
 cache['num-samples'] = str(nSamples).encode()
 writeCache(env, cache)
 print('Created dataset with %d samples' % nSamples)
def get_sample_list(txt_path:str):
  with open(txt_path,'r') as fr:
    jpg_list=[x.strip() for x in fr.readlines() if os.path.exists(x.replace('.jpg','.txt').strip())]
  txt_content_list=[]
  for jpg in jpg_list:
    label_path=jpg.replace('.jpg','.txt')
    with open(label_path,'r') as fr:
      try:
        str_tmp=fr.readline()
      except UnicodeDecodeError as e:
        print(label_path)
        raise(e)
      txt_content_list.append(str_tmp.strip())
  return jpg_list,txt_content_list
if __name__ == "__main__":
 txt_path='/home/gpu-server/disk/disk1/NumberData/8NumberSample/aster_train.txt'
 lmdb_output_path = '/home/gpu-server/project/aster/dataset/train'
 imagePathList,labelList=get_sample_list(txt_path)
 createDataset(lmdb_output_path, imagePathList, labelList)

读取部分

这里用的pytorch的dataloader,简单记录一下,人比较懒,代码就直接抄过来,不整理拆分了,重点看__getitem__

from __future__ import absolute_import
# import sys
# sys.path.append('./')
import os
# import moxing as mox
import pickle
from tqdm import tqdm
from PIL import Image, ImageFile
import numpy as np
import random
import cv2
import lmdb
import sys
import six
import torch
from torch.utils import data
from torch.utils.data import sampler
from torchvision import transforms
from lib.utils.labelmaps import get_vocabulary, labels2strs
from lib.utils import to_numpy
ImageFile.LOAD_TRUNCATED_IMAGES = True
from config import get_args
global_args = get_args(sys.argv[1:])
if global_args.run_on_remote:
 import moxing as mox
 #moxing是一个分布式的框架 跳过
class LmdbDataset(data.Dataset):
 def __init__(self, root, voc_type, max_len, num_samples, transform=None):
  super(LmdbDataset, self).__init__()
  if global_args.run_on_remote:
   dataset_name = os.path.basename(root)
   data_cache_url = "/cache/%s" % dataset_name
   if not os.path.exists(data_cache_url):
    os.makedirs(data_cache_url)
   if mox.file.exists(root):
    mox.file.copy_parallel(root, data_cache_url)
   else:
    raise ValueError("%s not exists!" % root)
   self.env = lmdb.open(data_cache_url, max_readers=32, readonly=True)
  else:
   self.env = lmdb.open(root, max_readers=32, readonly=True)
  assert self.env is not None, "cannot create lmdb from %s" % root
  self.txn = self.env.begin()
  self.voc_type = voc_type
  self.transform = transform
  self.max_len = max_len
  self.nSamples = int(self.txn.get(b"num-samples"))
  self.nSamples = min(self.nSamples, num_samples)
  assert voc_type in ['LOWERCASE', 'ALLCASES', 'ALLCASES_SYMBOLS','DIGITS']
  self.EOS = 'EOS'
  self.PADDING = 'PADDING'
  self.UNKNOWN = 'UNKNOWN'
  self.voc = get_vocabulary(voc_type, EOS=self.EOS, PADDING=self.PADDING, UNKNOWN=self.UNKNOWN)
  self.char2id = dict(zip(self.voc, range(len(self.voc))))
  self.id2char = dict(zip(range(len(self.voc)), self.voc))
  self.rec_num_classes = len(self.voc)
  self.lowercase = (voc_type == 'LOWERCASE')
 def __len__(self):
  return self.nSamples
 def __getitem__(self, index):
  assert index <= len(self), 'index range error'
  index += 1
  img_key = b'image-%09d' % index
  imgbuf = self.txn.get(img_key)
  #由于Image.open需要一个类文件对象 所以这里需要把二进制转为一个类文件对象
  buf = six.BytesIO()
  buf.write(imgbuf)
  buf.seek(0)
  try:
   img = Image.open(buf).convert('RGB')
   # img = Image.open(buf).convert('L')
   # img = img.convert('RGB')
  except IOError:
   print('Corrupted image for %d' % index)
   return self[index + 1]
  # reconition labels
  label_key = b'label-%09d' % index
  word = self.txn.get(label_key).decode()
  if self.lowercase:
   word = word.lower()
  ## fill with the padding token
  label = np.full((self.max_len,), self.char2id[self.PADDING], dtype=np.int)
  label_list = []
  for char in word:
   if char in self.char2id:
    label_list.append(self.char2id[char])
   else:
    ## add the unknown token
    print('{0} is out of vocabulary.'.format(char))
    label_list.append(self.char2id[self.UNKNOWN])
  ## add a stop token
  label_list = label_list + [self.char2id[self.EOS]]
  assert len(label_list) <= self.max_len
  label[:len(label_list)] = np.array(label_list)
  if len(label) <= 0:
   return self[index + 1]
  # label length
  label_len = len(label_list)
  if self.transform is not None:
   img = self.transform(img)
  return img, label, label_len

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

详解Python 数据库的Connection、Cursor两大对象

详解Python 数据库的Connection、Cursor两大对象

Python 数据库图解流程 Connection、Cursor比喻 Connection()的参数列表 host,连接的数据库服务器主机名,默认为本地主机(localhost)。u...

django的ORM操作 增加和查询

ORM 对象关系映射 在数据库中,实现对数据的增删改查,使用的是SQ语句, 在django中,通过python代码,实现对数据库的增删改查,这就是ORM。 在python中,用类名 代表...

Windows系统下多版本pip的共存问题详解

Windows系统下多版本pip的共存问题详解

前言 可能很多人一看到这个标题直接就关闭了,这么简单和low的问题有必要说出来吗?一看就知道是个Python的小白。如果你是这么想的话,那么就没有必要看下去了,因为对你来说也没有...

Python设计模式之职责链模式原理与用法实例分析

Python设计模式之职责链模式原理与用法实例分析

本文实例讲述了Python设计模式之职责链模式原理与用法。分享给大家供大家参考,具体如下: 职责链模式(Chain Of Responsibility):使多个对象都有机会处理请求,从而...

python用Pygal如何生成漂亮的SVG图像详解

python用Pygal如何生成漂亮的SVG图像详解

前言 SVG可以算是目前最最火热的图像文件格式了,它的英文全称为Scalable Vector Graphics,意思为可缩放的矢量图形。它是基于XML(Extensible Marku...