python kafka 多线程消费者&手动提交实例
官方文档:https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html
import threading import os import sys from kafka import KafkaConsumer, TopicPartition, OffsetAndMetadata from consumers.db_util import * from consumers.json_dispose import * from collections import OrderedDict threads = [] # col_dic, sql_dic = get() class MyThread(threading.Thread): def __init__(self, thread_name, topic, partition): threading.Thread.__init__(self) self.thread_name = thread_name # self.keyName = keyName self.partition = partition self.topic = topic def run(self): print("Starting " + self.name) Consumer(self.thread_name, self.topic, self.partition) def stop(self): sys.exit() def Consumer(thread_name, topic, partition): broker_list = '172.16.90.63:6667, 172.16.90.58:6667, 172.16.90.59:6667' ''' fetch_min_bytes(int) - 服务器为获取请求而返回的最小数据量,否则请等待 fetch_max_wait_ms(int) - 如果没有足够的数据立即满足fetch_min_bytes给出的要求,服务器在回应提取请求之前将阻塞的最大时间量(以毫秒为单位) fetch_max_bytes(int) - 服务器应为获取请求返回的最大数据量。这不是绝对最大值,如果获取的第一个非空分区中的第一条消息大于此值, 则仍将返回消息以确保消费者可以取得进展。注意:使用者并行执行对多个代理的提取,因此内存使用将取决于包含该主题分区的代理的数量。 支持的Kafka版本> = 0.10.1.0。默认值:52428800(50 MB)。 enable_auto_commit(bool) - 如果为True,则消费者的偏移量将在后台定期提交。默认值:True。 max_poll_records(int) - 单次调用中返回的最大记录数poll()。默认值:500 max_poll_interval_ms(int) - poll()使用使用者组管理时的调用之间的最大延迟 。这为消费者在获取更多记录之前可以闲置的时间量设置了上限。 如果 poll()在此超时到期之前未调用,则认为使用者失败,并且该组将重新平衡以便将分区重新分配给另一个成员。默认300000 ''' consumer = KafkaConsumer(bootstrap_servers=broker_list, group_id="xiaofesi", client_id=thread_name, enable_auto_commit=False, fetch_min_bytes=1024*1024,#1M # fetch_max_bytes=1024 * 1024 * 1024 * 10, fetch_max_wait_ms=60000,#30s request_timeout_ms=305000, # consumer_timeout_ms=1, # max_poll_records=5000, # max_poll_interval_ms=60000 无该参数 ) #查出数据库上次保存的offset,此offset已经是上次消费最后一条的offset的offset+1,也就是这次消费的起始位 dic = get_kafka(topic, partition) tp = TopicPartition(topic, partition) print(thread_name, tp, dic['offset']) #分配该消费者的TopicPartition,也就是topic和partition,根据参数,我是三个消费者,三个线程,每个线程消费者消费一个分区 consumer.assign([tp]) #重置此消费者消费的起始位 consumer.seek(tp, dic['offset']) print("程序首次运行\t线程:", thread_name, "分区:", partition, "偏移量:", dic['offset'], "\t开始消费...") num=0 #记录该消费者消费次数 # end_offset = consumer.end_offsets([tp])[tp] # print(end_offset) while True: args = OrderedDict() msg = consumer.poll(timeout_ms=60000) end_offset = consumer.end_offsets([tp])[tp] print('已保存的偏移量', consumer.committed(tp),'最新偏移量,',end_offset) if len(msg) > 0: print("线程:", thread_name, "分区:", partition, "最大偏移量:", end_offset, "有无数据,", len(msg)) lines=0 for data in msg.values(): for line in data: lines+=1 line = eval(line.value.decode('utf-8')) ''' do something ''' # 线程此批次消息条数 print(thread_name,"lines",lines) #数据保存至数据库 is_succeed = save_to_db(args, thread_name) if is_succeed: #更新自己保存在数据库中的各topic, partition的偏移量 is_succeed1 = update_offset(topic, partition, end_offset) #手动提交偏移量 offsets格式:{TopicPartition:OffsetAndMetadata(offset_num,None)} consumer.commit(offsets={tp:(OffsetAndMetadata(end_offset,None))}) print(thread_name,"to db suss",num+1) if is_succeed1 == 0: #系统退出?这个还没试 os.exit() ''' sys.exit() 只能退出该线程,也就是说其它两个线程正常运行,主程序不退出 ''' else: os.exit() else: print(thread_name,'没有数据') num+=1 print(thread_name,"第",num,"次") if __name__ == '__main__': try: t1 = MyThread("Thread-0", "test", 0) threads.append(t1) t2 = MyThread("Thread-1", "test", 1) threads.append(t2) t3 = MyThread("Thread-2", "test", 2) threads.append(t3) for t in threads: t.start() for t in threads: t.join() print("exit program with 0") except: print("Error: failed to run consumer program")
以上这篇python kafka 多线程消费者&手动提交实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。