Python 余弦相似度与皮尔逊相关系数 计算实例

yipeiwu_com6年前Python基础

夹角余弦(Cosine)

也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

即:

余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向更加吻合,则越相似。当两个向量的方向完全相反夹角余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度与向量的幅值无关,只与向量的方向相关。

import numpy as np
x=np.random.random(10)
y=np.random.random(10)
 
#方法一:根据公式求解
d1=np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y))
 
#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=1-pdist(X,'cosine')

两个向量完全相等时,余弦值为1,如下的代码计算出来的d=1。

d=1-pdist([x,x],'cosine')

皮尔逊相关系数(Pearson correlation)

(1) 皮尔逊相关系数的定义

前面提到的余弦相似度只与向量方向有关,但它会受到向量的平移影响,在夹角余弦公式中如果将 x 平移到 x+1, 余弦值就会改变。怎样才能实现平移不变性?这就要用到皮尔逊相关系数(Pearson correlation),有时候也直接叫相关系数。

如果将夹角余弦公式写成:

皮尔逊相关系数具有平移不变性和尺度不变性,计算出了两个向量(维度)的相关性。

在python中的实现:'

import numpy as np
x=np.random.random(10)
y=np.random.random(10)
 
#方法一:根据公式求解
x_=x-np.mean(x)
y_=y-np.mean(y)
d1=np.dot(x_,y_)/(np.linalg.norm(x_)*np.linalg.norm(y_))
 
#方法二:根据numpy库求解
X=np.vstack([x,y])
d2=np.corrcoef(X)[0][1]

相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

相关文章

python中requests模块的使用方法

本文实例讲述了python中requests模块的使用方法。分享给大家供大家参考。具体分析如下: 在HTTP相关处理中使用python是不必要的麻烦,这包括urllib2模块以巨大的复杂...

python素数筛选法浅析

python素数筛选法浅析

原理:   素数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。在加密应用中起重要的位置,比如广为人知的RSA算法中,就是基于大整数的因式分解难题,寻找两个超...

使用turtle绘制五角星、分形树

使用turtle绘制五角星、分形树

本文实例为大家分享了使用turtle绘制五角星和分形树的具体代码,供大家参考,具体内容如下 turtle 库 与之前程序的区别: 没有显示的input()与output() 没...

Python学习笔记之列表和成员运算符及列表相关方法详解

本文实例讲述了Python学习笔记之列表和成员运算符及列表相关方法。分享给大家供大家参考,具体如下: 列表和成员运算符 列表可以包含我们到目前为止所学的任何数据类型并且可以混合到一起。...

简单了解为什么python函数后有多个括号

这篇文章主要介绍了简单了解为什么python函数后有多个括号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一般而言,函数后面只有一个...