Python 余弦相似度与皮尔逊相关系数 计算实例

yipeiwu_com6年前Python基础

夹角余弦(Cosine)

也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

即:

余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向更加吻合,则越相似。当两个向量的方向完全相反夹角余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度与向量的幅值无关,只与向量的方向相关。

import numpy as np
x=np.random.random(10)
y=np.random.random(10)
 
#方法一:根据公式求解
d1=np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y))
 
#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=1-pdist(X,'cosine')

两个向量完全相等时,余弦值为1,如下的代码计算出来的d=1。

d=1-pdist([x,x],'cosine')

皮尔逊相关系数(Pearson correlation)

(1) 皮尔逊相关系数的定义

前面提到的余弦相似度只与向量方向有关,但它会受到向量的平移影响,在夹角余弦公式中如果将 x 平移到 x+1, 余弦值就会改变。怎样才能实现平移不变性?这就要用到皮尔逊相关系数(Pearson correlation),有时候也直接叫相关系数。

如果将夹角余弦公式写成:

皮尔逊相关系数具有平移不变性和尺度不变性,计算出了两个向量(维度)的相关性。

在python中的实现:'

import numpy as np
x=np.random.random(10)
y=np.random.random(10)
 
#方法一:根据公式求解
x_=x-np.mean(x)
y_=y-np.mean(y)
d1=np.dot(x_,y_)/(np.linalg.norm(x_)*np.linalg.norm(y_))
 
#方法二:根据numpy库求解
X=np.vstack([x,y])
d2=np.corrcoef(X)[0][1]

相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

相关文章

详解 Python 与文件对象共事的实例

详解 Python 与文件对象共事的实例 Python 有一个内置函数,open,用来打开在磁盘上的文件。open 返回一个文件对象,它拥有一些方法和属性,可以得到被打开文件的信息,以及...

状态机的概念和在Python下使用状态机的教程

什么是状态机? 关于状态机的一个极度确切的描述是它是一个有向图形,由一组节点和一组相应的转移函数组成。状态机通过响应一系列事件而“运行”。每个事件都在属于“当前”节点的转移函数的控制范围...

11个并不被常用但对开发非常有帮助的Python库

11个并不被常用但对开发非常有帮助的Python库

近来,越来越多的数据科学家开始使用Python,我不由得想到,尽管他们从pandas、scikit-learn和numpy这些库中得到了不少好处,但是他们也许错过了一些也许较老但同样有帮...

详解Python并发编程之创建多线程的几种方法

大家好,并发编程 今天开始进入第二篇。 今天的内容会比较基础,主要是为了让新手也能无障碍地阅读,所以还是要再巩固下基础。学完了基础,你们也就能很顺畅地跟着我的思路理解以后的文章。 本文...

详解python播放音频的三种方法

第一种 使用pygame模块 pygame.mixer.init() pygame.mixer.music.load(self.wav_file) pygame.mix...