Python迷宫生成和迷宫破解算法实例

yipeiwu_com5年前Python基础

迷宫生成

1.随机PRIM

思路:先让迷宫中全都是墙,不断从列表(最初只含有一个启始单元格)中选取一个单元格标记为通路,将其周围(上下左右)未访问过的单元格放入列表并标记为已访问,再随机选取该单元格与周围通路单元格(若有的话)之间的一面墙打通。重复以上步骤直到列表为空,迷宫生成完毕。这种方式生成的迷宫难度高,岔口多。

效果:

代码:

import random
import numpy as np
from matplotlib import pyplot as plt


def build_twist(num_rows, num_cols): # 扭曲迷宫
	# (行坐标,列坐标,四面墙的有无&访问标记)
 m = np.zeros((num_rows, num_cols, 5), dtype=np.uint8)
 r, c = 0, 0
 trace = [(r, c)]
 while trace:
  r, c = random.choice(trace)
  m[r, c, 4] = 1	# 标记为通路
  trace.remove((r, c))
  check = []
  if c > 0:
   if m[r, c - 1, 4] == 1:
    check.append('L')
   elif m[r, c - 1, 4] == 0:
    trace.append((r, c - 1))
    m[r, c - 1, 4] = 2	# 标记为已访问
  if r > 0:
   if m[r - 1, c, 4] == 1:
    check.append('U')
   elif m[r - 1, c, 4] == 0:
    trace.append((r - 1, c))
    m[r - 1, c, 4] = 2
  if c < num_cols - 1:
   if m[r, c + 1, 4] == 1:
    check.append('R')
   elif m[r, c + 1, 4] == 0:
    trace.append((r, c + 1))
    m[r, c + 1, 4] = 2
  if r < num_rows - 1:
   if m[r + 1, c, 4] == 1:
    check.append('D')
   elif m[r + 1, c, 4] == 0:
    trace.append((r + 1, c))
    m[r + 1, c, 4] = 2
  if len(check):
   direction = random.choice(check)
   if direction == 'L':	# 打通一面墙
    m[r, c, 0] = 1
    c = c - 1
    m[r, c, 2] = 1
   if direction == 'U':
    m[r, c, 1] = 1
    r = r - 1
    m[r, c, 3] = 1
   if direction == 'R':
    m[r, c, 2] = 1
    c = c + 1
    m[r, c, 0] = 1
   if direction == 'D':
    m[r, c, 3] = 1
    r = r + 1
    m[r, c, 1] = 1
 m[0, 0, 0] = 1
 m[num_rows - 1, num_cols - 1, 2] = 1
 return m

2.深度优先

思路:从起点开始随机游走并在前进方向两侧建立墙壁,标记走过的单元格,当无路可走(周围无未访问过的单元格)时重复返回上一个格子直到有新的未访问单元格可走。最终所有单元格都被访问过后迷宫生成完毕。这种方式生成的迷宫较为简单,由一条明显但是曲折的主路径和不多的分支路径组成。

效果:

代码:

def build_tortuous(num_rows, num_cols): # 曲折迷宫
 m = np.zeros((num_rows, num_cols, 5), dtype=np.uint8)
 r = 0
 c = 0
 trace = [(r, c)]
 while trace:
  m[r, c, 4] = 1	# 标记为已访问
  check = []
  if c > 0 and m[r, c - 1, 4] == 0:
   check.append('L')
  if r > 0 and m[r - 1, c, 4] == 0:
   check.append('U')
  if c < num_cols - 1 and m[r, c + 1, 4] == 0:
   check.append('R')
  if r < num_rows - 1 and m[r + 1, c, 4] == 0:
   check.append('D')
  if len(check):
   trace.append([r, c])
   direction = random.choice(check)
   if direction == 'L':
    m[r, c, 0] = 1
    c = c - 1
    m[r, c, 2] = 1
   if direction == 'U':
    m[r, c, 1] = 1
    r = r - 1
    m[r, c, 3] = 1
   if direction == 'R':
    m[r, c, 2] = 1
    c = c + 1
    m[r, c, 0] = 1
   if direction == 'D':
    m[r, c, 3] = 1
    r = r + 1
    m[r, c, 1] = 1
  else:
   r, c = trace.pop()
 m[0, 0, 0] = 1
 m[num_rows - 1, num_cols - 1, 2] = 1
 return m

迷宫破解

效果:

1.填坑法

思路:从起点开始,不断随机选择没墙的方向前进,当处于一个坑(除了来时的方向外三面都是墙)中时,退一步并建造一堵墙将坑封上。不断重复以上步骤,最终就能抵达终点。

优缺点:可以处理含有环路的迷宫,但是处理时间较长还需要更多的储存空间。

代码:

def solve_fill(num_rows, num_cols, m): # 填坑法
 map_arr = m.copy()	# 拷贝一份迷宫来填坑
 map_arr[0, 0, 0] = 0
 map_arr[num_rows-1, num_cols-1, 2] = 0
 move_list = []
 xy_list = []
 r, c = (0, 0)
 while True:
  if (r == num_rows-1) and (c == num_cols-1):
   break
  xy_list.append((r, c))
  wall = map_arr[r, c]
  way = []
  if wall[0] == 1:
   way.append('L')
  if wall[1] == 1:
   way.append('U')
  if wall[2] == 1:
   way.append('R')
  if wall[3] == 1:
   way.append('D')
  if len(way) == 0:
   return False
  elif len(way) == 1:	# 在坑中
   go = way[0]
   move_list.append(go)
   if go == 'L':	# 填坑
    map_arr[r, c, 0] = 0
    c = c - 1
    map_arr[r, c, 2] = 0
   elif go == 'U':
    map_arr[r, c, 1] = 0
    r = r - 1
    map_arr[r, c, 3] = 0
   elif go == 'R':
    map_arr[r, c, 2] = 0
    c = c + 1
    map_arr[r, c, 0] = 0
   elif go == 'D':
    map_arr[r, c, 3] = 0
    r = r + 1
    map_arr[r, c, 1] = 0
  else:
   if len(move_list) != 0:	# 不在坑中
    come = move_list[len(move_list)-1]
    if come == 'L':
     if 'R' in way:
      way.remove('R')
    elif come == 'U':
     if 'D' in way:
      way.remove('D')
    elif come == 'R':
     if 'L' in way:
      way.remove('L')
    elif come == 'D':
     if 'U' in way:
      way.remove('U')
   go = random.choice(way)	# 随机选一个方向走
   move_list.append(go)
   if go == 'L':
    c = c - 1
   elif go == 'U':
    r = r - 1
   elif go == 'R':
    c = c + 1
   elif go == 'D':
    r = r + 1
 r_list = xy_list.copy()	
 r_list.reverse()	# 行动坐标记录的反转
 i = 0
 while i < len(xy_list)-1:	# 去掉重复的移动步骤
  j = (len(xy_list)-1) - r_list.index(xy_list[i])
  if i != j:	# 说明这两个坐标之间的行动步骤都是多余的,因为一顿移动回到了原坐标
   del xy_list[i:j]
   del move_list[i:j]
   r_list = xy_list.copy()
   r_list.reverse()
  i = i + 1
 return move_list

2.回溯法

思路:遇到岔口则将岔口坐标和所有可行方向压入栈,从栈中弹出一个坐标和方向,前进。不断重复以上步骤,最终就能抵达终点。

优缺点:计算速度快,需要空间小,但无法处理含有环路的迷宫。

代码:

def solve_backtrack(num_rows, num_cols, map_arr): # 回溯法
 move_list = ['R']
 m = 1	# 回溯点组号
 mark = []
 r, c = (0, 0)
 while True:
  if (r == num_rows-1) and (c == num_cols-1):
   break
  wall = map_arr[r, c]
  way = []
  if wall[0] == 1:
   way.append('L')
  if wall[1] == 1:
   way.append('U')
  if wall[2] == 1:
   way.append('R')
  if wall[3] == 1:
   way.append('D')
  come = move_list[len(move_list) - 1]
  if come == 'L':
   way.remove('R')
  elif come == 'U':
   way.remove('D')
  elif come == 'R':
   way.remove('L')
  elif come == 'D':
   way.remove('U')
  while way:
   mark.append((r, c, m, way.pop()))	# 记录当前坐标和可行移动方向
  if mark:
   r, c, m, go = mark.pop()
   del move_list[m:]	# 删除回溯点之后的移动
  else:
   return False
  m = m + 1
  move_list.append(go)
  if go == 'L':
   c = c - 1
  elif go == 'U':
   r = r - 1
  elif go == 'R':
   c = c + 1
  elif go == 'D':
   r = r + 1
 del move_list[0]
 return move_list

测试

rows = int(input("Rows: "))
cols = int(input("Columns: "))

Map = build_twist(rows, cols)
plt.imshow(draw(rows, cols, Map), cmap='gray')
fig = plt.gcf()
fig.set_size_inches(cols/10/3, rows/10/3)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
fig.savefig('aaa.png', format='png', transparent=True, dpi=300, pad_inches=0)

move = solve_backtrack(rows, cols, Map)
plt.imshow(draw_path(draw(rows, cols, Map), move), cmap='hot')
fig = plt.gcf()
fig.set_size_inches(cols/10/3, rows/10/3)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
fig.savefig('bbb.png', format='png', transparent=True, dpi=300, pad_inches=0)

以上这篇Python迷宫生成和迷宫破解算法实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现在目录中查找指定文件的方法

本文实例讲述了python实现在目录中查找指定文件的方法。分享给大家供大家参考。具体实现方法如下: 1. 模糊查找 复制代码 代码如下:import os from glob impor...

Python3实现从指定路径查找文件的方法

本文实例讲述了Python3实现从指定路径查找文件的方法。分享给大家供大家参考。具体实现方法如下: 这里给定一个搜索路径,根据这个路径请求和请求的文件名,找到第一个符合要求的文件 i...

python输出数组中指定元素的所有索引示例

python输出数组中指定元素的所有索引示例

如下所示,代码为: array也可直接使用上面代码。测试如下: 以上这篇python输出数组中指定元素的所有索引示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多...

Python中使用 Selenium 实现网页截图实例

Selenium 是一个可以让浏览器自动化地执行一系列任务的工具,常用于自动化测试。不过,也可以用来给网页截图。目前,它支持 Java、C#、Ruby 以及 Python 四种客户端语言...

使用优化器来提升Python程序的执行效率的教程

如果不首先想想这句Knuth的名言,就开始进行优化工作是不明智的。可是,你很快写出来加入一些特性的代码,可能会很丑陋,你需要注意了。这篇文章就是为这时候准备的。 那么接下来就是一些很有用...