详解Python Opencv和PIL读取图像文件的差别

yipeiwu_com5年前Python基础

前言

之前在进行深度学习训练的时候,偶然发现使用PIL读取图片训练的效果要比使用python-opencv读取出来训练的效果稍好一些,也就是训练更容易收敛。可能的原因是两者读取出来的数据转化为pytorch中Tensor变量稍有不同,这里进行测试。

之后的代码都导入了:

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import torch
import cv2

测试

使用PIL和cv2读取图片时会有细微的区别,通过下面的代码可以发现两者读取图片是有区别的,也就是使用PIL读取出来的图片转为numpy格式和直接使用cv读取的图片在像素点上并不是完全一致:

In[11]: image = cv2.imread('datasets/0_target.jpg')
In[18]: image_pil = Image.open('datasets/0_target.jpg').convert('RGB')
In[19]: image_pil = np.array(image_pil)
In[20]: image_cv = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
In[21]: image_cv == image_pil
Out[21]: 
array([[[ True, True, False],
    [ True, False, False],
    [False, False, False],
    ...,
    [ True, True, True],
    [ True, True, True],
    [ True, True, True]],

    [[ True, True, False],
    [ True, True, True],
    [False, True, False],
    ...,
    [ True, True, False],
    [ True, True, True],
    [ True, True, True]],

    [[ True, True, False],
    [ True, True, True],
    [False, False, False],
    ...,
    [ True, True, True],
    [ True, True, True],
    [ True, True, False]],

    ...,

    [[ True, True, True],
    [ True, True, True],
    [ True, True, True],
    ...,
    [False, False, True],
    [ True, True, True],
    [False, False, False]],

    [[ True, True, True],
    [ True, True, True],
    [ True, True, True],
    ...,
    [ True, True, True],
    [ True, True, True],
    [False, False, False]],

    [[ True, False, False],
    [ True, False, False],
    [ True, False, False],
    ...,
    [ True, True, True],
    [False, False, False],
    [ True, False, False]]])
In[26]: image_cv.shape
Out[26]: (682, 700, 3)
In[27]: image_pil.shape
Out[27]: (682, 700, 3)
In[28]: image_pil - image_cv
Out[28]: 
array([[[ 0,  0,  1],
    [ 0, 255,  3],
    [255,  1,  2],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0]],

    [[ 0,  0,  2],
    [ 0,  0,  0],
    [255,  0,  2],
    ...,
    [ 0,  0, 254],
    [ 0,  0,  0],
    [ 0,  0,  0]],

    [[ 0,  0,  2],
    [ 0,  0,  0],
    [255,  1,  2],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0, 254]],

    ...,

    [[ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0],
    ...,
    [254,  1,  0],
    [ 0,  0,  0],
    [ 1, 255,  3]],

    [[ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 2, 254,  4]],

    [[ 0,  1, 253],
    [ 0,  1, 253],
    [ 0,  1, 255],
    ...,
    [ 0,  0,  0],
    [ 1, 254,  1],
    [ 0, 255,  2]]], dtype=uint8)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现杨辉三角思路

程序输出需要实现如下效果: [1] [1,1] [1,2,1] [1,3,3,1] ...... 方法:迭代,生成器 def triangles() L = [1] while...

浅析Python中的getattr(),setattr(),delattr(),hasattr()

getattr()函数是Python自省的核心函数,具体使用大体如下: 获取对象引用getattr Getattr用于返回一个对象属性,或者方法 class A: def __i...

Python从零开始创建区块链

Python从零开始创建区块链

作者认为最快的学习区块链的方式是自己创建一个,本文就跟随作者用Python来创建一个区块链。 对数字货币的崛起感到新奇的我们,并且想知道其背后的技术——区块链是怎样实现的。 但是完全搞懂...

python常用web框架简单性能测试结果分享(包含django、flask、bottle、tornado)

测了一下django、flask、bottle、tornado 框架本身最简单的性能。对django的性能完全无语了。 django、flask、bottle 均使用gunicorn+g...

从零学python系列之从文件读取和保存数据

在HeadFirstPython网站中下载所有文件,解压后以chapter 3中的“sketch.txt”为例:   新建IDLE会话,首先导入os模块,并将工作目录却换到包含...