基于python及pytorch中乘法的使用详解

yipeiwu_com6年前Python基础

numpy中的乘法

A = np.array([[1, 2, 3], [2, 3, 4]])
B = np.array([[1, 0, 1], [2, 1, -1]])
C = np.array([[1, 0], [0, 1], [-1, 0]])
 
A * B : # 对应位置相乘
np.array([[ 1, 0, 3], [ 4, 3, -4]]) 
 
A.dot(B) :  # 矩阵乘法 
ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
 
A.dot(C) : # 矩阵乘法  | < -- > np.dot(A, C)
np.array([[-2, 2],[-2, 3]])

总结 : 在numpy中,*表示为两个数组对应位置相乘; dot表示两个数组进行矩阵乘法

pytorch中的乘法

A = torch.tensor([[1, 2, 3], [2, 3, 4]])
B = torch.tensor([[1, 0, 1], [2, 1, -1]])
C = torch.tensor([[1, 0], [0, 1], [-1, 0]])
 
# 矩阵乘法
torch.mm(mat1, mat2, out=None) <--> torch.matmul(mat1, mat2, out=None)
eg : 
  torch.mm(A, B)   : RuntimeError: size mismatch, m1: [2 x 3], m2: [2 x 3]
  torch.mm(A, C)   : tensor([[-2, 2], [-2, 3]])
  torch.matmul(A, C) : tensor([[-2, 2], [-2, 3]])
 
# 点乘
torch.mul(mat1, mat2, out=None)
 
eg :
  torch.mul(A, B) : tensor([[ 1, 0, 3], [ 4, 3, -4]])
  torch.mul(A, C) : RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

总结 : 在pytorch中,mul表示为两个数组对应位置相乘; mm和matmul表示两个数组进行矩阵乘法

以上这篇基于python及pytorch中乘法的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python脚本生成caffe train_list.txt的方法

首先给出代码: import os path = "/home/data//" path_exp = os.path.expanduser(path) classes =...

详解Python map函数及Python map()函数的用法

详解Python map函数及Python map()函数的用法

python map函数 map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到...

python修改list中所有元素类型的三种方法

修改list中所有元素类型: 方法一: new = list() a = ['1', '2', '3'] for x in a: new.append(int(x)) print(...

Flask配置Cors跨域的实现

Flask配置Cors跨域的实现

1 跨域的理解 跨域是指:浏览器A从服务器B获取的静态资源,包括Html、Css、Js,然后在Js中通过Ajax访问C服务器的静态资源或请求。即:浏览器A从B服务器拿的资源,资源中想访...

python跳过第一行快速读取文件内容的实例

Python编程时,经常需要跳过第一行读取文件内容。简单的做法是为每行设置一个line_num,然后判断line_num是否为1,如果不等于1,则进行读取操作。 相应的Python代码如...