pytorch sampler对数据进行采样的实现

yipeiwu_com6年前Python基础

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler,它会按顺序一个一个进行采样。这里介绍另外一个很有用的采样方法: WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样。

构建WeightedRandomSampler时需提供两个参数:每个样本的权重weights、共选取的样本总数num_samples,以及一个可选参数replacement。权重越大的样本被选中的概率越大,待选取的样本数目一般小于全部的样本数目。replacement用于指定是否可以重复选取某一个样本,默认为True,即允许在一个epoch中重复采样某一个数据。如果设为False,则当某一类的样本被全部选取完,但其样本数目仍未达到num_samples时,sampler将不会再从该类中选择数据,此时可能导致weights参数失效。

下面举例说明。

from dataSet import *
dataset = DogCat('data/dogcat/', transform=transform)

from torch.utils.data import DataLoader
# 狗的图片被取出的概率是猫的概率的两倍
# 两类图片被取出的概率与weights的绝对大小无关,只和比值有关
weights = [2 if label == 1 else 1 for data, label in dataset]

print(weights)

from torch.utils.data.sampler import WeightedRandomSampler
sampler = WeightedRandomSampler(weights,\
                num_samples=9,\
                replacement=True)
dataloader = DataLoader(dataset,
            batch_size=3,
            sampler=sampler)
for datas, labels in dataloader:
  print(labels.tolist())

输出:

[2, 2, 1, 1, 2, 1, 1, 2]
[1, 1, 0]
[1, 0, 0]
[0, 0, 1]

github 地址:

https://github.com/WebLearning17/CommonTool

以上这篇pytorch sampler对数据进行采样的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

tensorflow 输出权重到csv或txt的实例

实例如下所示: import numpy as np W_val, b_val = sess.run([weights_tensor, biases_tensor]) np.save...

Python面向对象基础入门之设置对象属性

前言 前面我们已经介绍了 python面向对象入门教程之从代码复用开始(一) ,这篇文章主要介绍的是关于Python面向对象之设置对象属性的相关内容,下面话不多说了,来一起看看...

python的绘图工具matplotlib使用实例

python的绘图工具matplotlib使用实例

matplotlib是功能十分强大的绘制二维图形的Python模块,它用Python语言实现了MATLAB画图函数的易用性,同时又有非常强大的可定制性。它提供了一整套和matlab相似的...

Python在图片中添加文字的两种方法

Python在图片中添加文字的两种方法

本文主要介绍的是利用Python在图片中添加文字的两种方法,下面分享处理供大家参考学习,下来要看看吧 一、使用OpenCV 在图片中添加文字看上去很简单,但是如果是利用OpenCV来做...

python实现根据用户输入从电影网站获取影片信息的方法

本文实例讲述了python实现根据用户输入从电影网站获取影片信息的方法。分享给大家供大家参考。具体如下: 这段python代码主要演示了用户终端输入,正则表达式,网页抓取等 #!/u...