pytorch中tensor张量数据类型的转化方式

yipeiwu_com5年前Python基础

1.tensor张量与numpy相互转换

tensor ----->numpy

import torch
a=torch.ones([2,5])

tensor([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]])
# **********************************    
b=a.numpy()

array([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]], dtype=float32)
numpy ----->tensor

import numpy as np
a=np.ones([2,5])

array([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]])
# **********************************    
b=torch.from_numpy(a)

tensor([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]], dtype=torch.float64)

2.tensor张量与list相互转换

tensor—>list

a=torch.ones([1,5])

tensor([[1., 1., 1., 1., 1.]])
# ***********************************
b=a.tolist()

[[1.0, 1.0, 1.0, 1.0, 1.0]]



list—>tensor

a=list(range(1,6))

[1, 2, 3, 4, 5]
# **********************************
b=torch.tensor(a)

tensor([1, 2, 3, 4, 5])

3.tensor张量见类型转换

构建一个新的张量,你要转变成不同的类型只需要根据自己的需求选择即可

tensor = torch.Tensor(3, 5)

# torch.long() 将tensor投射为long类型
newtensor = tensor.long()

# torch.half()将tensor投射为半精度浮点类型
newtensor = tensor.half()

# torch.int()将该tensor投射为int类型
newtensor = tensor.int()

# torch.double()将该tensor投射为double类型
newtensor = tensor.double()

# torch.float()将该tensor投射为float类型
newtensor = tensor.float()

# torch.char()将该tensor投射为char类型
newtensor = tensor.char()

# torch.byte()将该tensor投射为byte类型
newtensor = tensor.byte()

# torch.short()将该tensor投射为short类型
newtensor = tensor.short()

4.type_as() 将张量转换成指定类型张量

>>> a=torch.Tensor(2,5)
>>> a
tensor([[1.9431e-19, 4.8613e+30, 1.4603e-19, 2.0704e-19, 4.7429e+30],
    [1.6530e+19, 1.8254e+31, 1.4607e-19, 6.8801e+16, 1.8370e+25]])
>>> b=torch.IntTensor(1,2)
>>> b
tensor([[16843009,    1]], dtype=torch.int32)
>>> a.type_as(b)
tensor([[     0, -2147483648,      0,      0, -2147483648],
    [-2147483648, -2147483648,      0, -2147483648, -2147483648]],
    dtype=torch.int32)
>>> a
tensor([[1.9431e-19, 4.8613e+30, 1.4603e-19, 2.0704e-19, 4.7429e+30],
    [1.6530e+19, 1.8254e+31, 1.4607e-19, 6.8801e+16, 1.8370e+25]])

以上这篇pytorch中tensor张量数据类型的转化方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用python快速实现不同机器间文件夹共享方式

Python有一个比较好用的功能,那就是很方便的实现共享文件夹。 首先两台主机都需要安装python,在未建立逻辑连接之前它们是不区分主从机的。 例如:现在有两台机器,一台windows...

Python实现1-9数组形成的结果为100的所有运算式的示例

问题: 编写一个在1,2,…,9(顺序不能变)数字之间插入+或-或什么都不插入,使得计算结果总是100的程序,并输出所有的可能性。例如:1 + 2 + 34–5 + 67–8 + 9 =...

Python通过websocket与js客户端通信示例分析

Python通过websocket与js客户端通信示例分析

具体的 websocket 介绍可见 http://zh.wikipedia.org/wiki/WebSocket  这里,介绍如何使用 Python 与前端 js 进行通信。...

用Python的pandas框架操作Excel文件中的数据教程

用Python的pandas框架操作Excel文件中的数据教程

引言 本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务。有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要。作为额外的福利...

解决Python运行文件出现out of memory框的问题

解决Python运行文件出现out of memory框的问题

爬虫过程中,发现pycharm变得非常卡,然后出现了这个框: 原本想的是4G内存不够,带不动程序,要加内存条。然后发现图中三个对话框的数字都可以改动,感叹号右边也说please inc...