Pytorch 实现权重初始化

yipeiwu_com5年前Python基础

在TensorFlow中,权重的初始化主要是在声明张量的时候进行的。 而PyTorch则提供了另一种方法:首先应该声明张量,然后修改张量的权重。通过调用torch.nn.init包中的多种方法可以将权重初始化为直接访问张量的属性。

1、不初始化的效果

在Pytorch中,定义一个tensor,不进行初始化,打印看看结果:

w = torch.Tensor(3,4)
print (w)

可以看到这时候的初始化的数值都是随机的,而且特别大,这对网络的训练必定不好,最后导致精度提不上,甚至损失无法收敛。

2、初始化的效果

PyTorch提供了多种参数初始化函数:

torch.nn.init.constant(tensor, val)
torch.nn.init.normal(tensor, mean=0, std=1)
torch.nn.init.xavier_uniform(tensor, gain=1)

等等。详细请参考:http://pytorch.org/docs/nn.html

注意上面的初始化函数的参数tensor,虽然写的是tensor,但是也可以是Variable类型的。而神经网络的参数类型Parameter是Variable类的子类,所以初始化函数可以直接作用于神经网络参数。实际上,我们初始化也是直接去初始化神经网络的参数。

让我们试试效果:

w = torch.Tensor(3,4)
torch.nn.init.normal_(w)
print (w)

3、初始化神经网络的参数

对神经网络的初始化往往放在模型的__init__()函数中,如下所示:

class Net(nn.Module):

def __init__(self, block, layers, num_classes=1000):
  self.inplanes = 64
  super(Net, self).__init__()
  ***
  *** #定义自己的网络层
  ***

  for m in self.modules():
    if isinstance(m, nn.Conv2d):
      n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
      m.weight.data.normal_(0, math.sqrt(2. / n))
    elif isinstance(m, nn.BatchNorm2d):
      m.weight.data.fill_(1)
      m.bias.data.zero_()

***
*** #定义后续的函数
***

也可以采取另一种方式:

定义一个权重初始化函数,如下:

def weights_init(m):
  classname = m.__class__.__name__
  if classname.find('Conv2d') != -1:
    init.xavier_normal_(m.weight.data)
    init.constant_(m.bias.data, 0.0)
  elif classname.find('Linear') != -1:
    init.xavier_normal_(m.weight.data)
    init.constant_(m.bias.data, 0.0)

在模型声明时,调用初始化函数,初始化神经网络参数:

model = Net(*****)
model.apply(weights_init)

以上这篇Pytorch 实现权重初始化就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对django后台admin下拉框进行过滤的实例

使用django admin 自带后台 admin后台下拉显示的时候需要添加过滤条件, 因为表是自己关联自己,同时还需要过滤掉自己, 需要获取当前对象的id,需要获取obj_id f...

python求crc32值的方法

本文实例讲述了python求crc32值的方法。分享给大家供大家参考。具体实现方法如下: 要想求CRC值,前面要import binascii binascii.crc32(v)&nbs...

Python实现读取目录所有文件的文件名并保存到txt文件代码

代码: (使用os.listdir) 复制代码 代码如下: import os def ListFilesToTxt(dir,file,wildcard,recursion): &nb...

Python的Django中django-userena组件的简单使用教程

利用twitter/bootstrap,项目的基础模板算是顺利搞定。接下来开始处理用户中心。 用户中心主要包括用户登陆、注册以及头像等个人信息维护。此前,用户的注册管理我一直使用djan...

python 处理数字,把大于上限的数字置零实现方法

如下所示: # coding=utf-8 # 用来处理数字,大于上限的数字置零 f = open("/home/chuwei/桌面/trainA/loss/d_losses.tx...