pytorch中的transforms模块实例详解

yipeiwu_com5年前Python基础

pytorch中的transforms模块中包含了很多种对图像数据进行变换的函数,这些都是在我们进行图像数据读入步骤中必不可少的,下面我们讲解几种最常用的函数,详细的内容还请参考pytorch官方文档(放在文末)。

data_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ])

从上面的data_transforms变量中我们能够看出进行了多种变换,而Compose方法是将多种变换组合起来。data_transforms中一共包含了四个变换,前两个是对PILImage进行的,分别对其进行随机大小(默认原始图像大小的0.08-1.0)和随机宽高比(默认原始图像宽高比的3/4-4/3)的裁剪,之后resize到指定大小224;以及对原始图像进行随机(默认0.5概率)的水平翻转。

第三个transforms.ToTensor()的变换操作是关键一步,它将PILImage转变为torch.FloatTensor的数据形式,这种数据形式一定是C x H x W的图像格式加上[0,1]的大小范围。它将颜色通道这一维从第三维变换到了第一维。

最后的Normalize变换是对tensor这种数据格式进行的,它的操作是用给定的均值和标准差分别对每个通道的数据进行正则化。具体来说,给定均值(M1,...,Mn),给定标准差(S1,..,Sn),其中n是通道数(一般是3),对每个通道进行如下操作:

output[channel] = (input[channel] - mean[channel]) / std[channel]

最后需要强调一点的是,这几个变换的先后顺序有一定的讲究,因为不同的方法所处理的对象不一样,前两种变换是对PILImage进行的,而Normalize则是对tensor进行的,所以处理PILImage的变换方法(大多数方法)都需要放在ToTensor方法之前,而处理tensor的方法(比如Normalize方法)就要放在ToTensor方法之后。

附上pytorch官方参考:https://pytorch.org/docs/stable/torchvision/transforms.html?highlight=torchvision transforms

以上这篇pytorch中的transforms模块实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

windows下pycharm安装、创建文件、配置默认模板

windows下pycharm安装、创建文件、配置默认模板

本文为大家分享了windows下pycharm安装、创建文件、配置默认模板的具体步骤,供大家参考,具体内容如下 步骤: 下包 —->安装——>创建文件—->定制模板...

Python 操作 ElasticSearch的完整代码

Python 操作 ElasticSearch的完整代码

官方文档:https://elasticsearch-py.readthedocs.io/en/master/   1、介绍     python提供了操作ElasticSearch 接...

Python实现1-9数组形成的结果为100的所有运算式的示例

问题: 编写一个在1,2,…,9(顺序不能变)数字之间插入+或-或什么都不插入,使得计算结果总是100的程序,并输出所有的可能性。例如:1 + 2 + 34–5 + 67–8 + 9 =...

Pycharm最新激活码2019(推荐)

Pycharm最新激活码2019(推荐)

pycharm2019激活码是专门针对与pycharm2019这一款软件而研发的激活码,能够完美激活软件,并且能够支持2019.1版本,理论上也能够支持后继的2019.2,2019.3,...

python+matplotlib绘制3D条形图实例代码

python+matplotlib绘制3D条形图实例代码

本文分享的实例主要实现的是Python+matplotlib绘制一个有阴影和没有阴影的3D条形图,具体如下。 首先看看演示效果: 完整代码如下: import numpy as n...