基于torch.where和布尔索引的速度比较

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

import torch
import time
x = torch.Tensor([[1, 2, 3], [5, 5, 5], [7, 8, 9],[5,5,5],[1,2,3,],[1,2,4]])
'''
使用pytorch实现对于任意shape的torch.tensor,如果其中的element不等于5则为0,等于5则保留原数值
实现该功能的两种方式,并比较两种实现方式的速度
'''

# x[x!=5]=1
def t2(x):
  x[x!=5]=0
  return x
def t(x):
  zeros=torch.zeros(x.shape)
  # ones=torch.ones(x.shape)
  x=torch.where(x!=5,zeros,x)
  return x

t2_start=time.time()
t2=t2(x)
t2_end=time.time()

t_start=time.time()
t=t(x)
t_end=time.time()
print(t2,t)
print(torch.sum(t-t2))

print('using x[x!=5]=0 time:',t2_end-t2_start)
print('using torch.where time:',t_end-t_start)
'''
tensor([[0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [0., 0., 0.]]) tensor([[0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [0., 0., 0.]])
tensor(0.)
using x[x!=5]=0 time: 0.0010008811950683594
using torch.where time: 0.0

看来大神说的没错,果然是使用torch.where速度更快
 a[a!=5]=0 这种写法,速度比 torch.where 慢了超级多
'''

以上这篇基于torch.where和布尔索引的速度比较就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python递归函数实例讲解

Python递归函数实例讲解

Python递归函数实例 1、打开Python开发工具IDLE,新建‘递归.py'文件,并写代码如下: def digui(n): if n == 0 : print...

python实现内存监控系统

python实现内存监控系统

本文实例为大家分享了python实现内存监控系统的具体代码,供大家参考,具体内容如下 思路:通过系统命令或操作系统文件获取到内存信息(linux 内存信息存在/proc/meminfo...

详解Python import方法引入模块的实例

详解Python import方法引入模块的实例 在Python用import或者from…import或者from…import…as…来导入相应的模块,作用和使用方法与C语言的inc...

pandas factorize实现将字符串特征转化为数字特征

pandas factorize实现将字符串特征转化为数字特征

将原始数据中的字符串特征转化为模型可以识别的数字特征可是使用pandas自带的factorzie方法。 原始数据的job特征值如下 都是字符串特征,无法用于训练,当然可以单独建立map...

解决python中无法自动补全代码的问题

自已理解自我总结出来的方法,供自己以后使用 #coding:utf-8 from cv2 import * #这里表示让cv2的智能提示功能可用,但是这句话却没有导入cv2模块,不...