基于torch.where和布尔索引的速度比较

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

import torch
import time
x = torch.Tensor([[1, 2, 3], [5, 5, 5], [7, 8, 9],[5,5,5],[1,2,3,],[1,2,4]])
'''
使用pytorch实现对于任意shape的torch.tensor,如果其中的element不等于5则为0,等于5则保留原数值
实现该功能的两种方式,并比较两种实现方式的速度
'''

# x[x!=5]=1
def t2(x):
  x[x!=5]=0
  return x
def t(x):
  zeros=torch.zeros(x.shape)
  # ones=torch.ones(x.shape)
  x=torch.where(x!=5,zeros,x)
  return x

t2_start=time.time()
t2=t2(x)
t2_end=time.time()

t_start=time.time()
t=t(x)
t_end=time.time()
print(t2,t)
print(torch.sum(t-t2))

print('using x[x!=5]=0 time:',t2_end-t2_start)
print('using torch.where time:',t_end-t_start)
'''
tensor([[0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [0., 0., 0.]]) tensor([[0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [0., 0., 0.]])
tensor(0.)
using x[x!=5]=0 time: 0.0010008811950683594
using torch.where time: 0.0

看来大神说的没错,果然是使用torch.where速度更快
 a[a!=5]=0 这种写法,速度比 torch.where 慢了超级多
'''

以上这篇基于torch.where和布尔索引的速度比较就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django添加favicon.ico图标的示例代码

所谓favicon,即Favorites Icon的缩写,让浏览器的收藏夹中除显示相应的标题外,还以图标的方式区别不同的网站。 默认情况下,浏览器访问一个网站的时候,同时还会向服务器请求...

python dlib人脸识别代码实例

python dlib人脸识别代码实例

本文实例为大家分享了python dlib人脸识别的具体代码,供大家参考,具体内容如下 import matplotlib.pyplot as plt import dlib im...

django rest framework之请求与响应(详解)

前言:在上一篇文章,已经实现了访问指定URL就返回了指定的数据,这也体现了RESTful API的一个理念,每一个URL代表着一个资源。当然我们还知道RESTful API的另一个特性就...

pandas-resample按时间聚合实例

pandas-resample按时间聚合实例

如下所示: import pandas as pd #如果需要的话,需将df中的date列转为datetime df.date = pd.to_datetime(df.date,...

python打印n位数“水仙花数”(实例代码)

注:所谓n位数“水仙花数”是指一个n数,其各位数字n次方和等于该数本身。如三位数“水仙花数”是指一个三位数,其各位数3次方和等于该数本身。 一、3位数“水仙花数”如下: ...