基于torch.where和布尔索引的速度比较

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

import torch
import time
x = torch.Tensor([[1, 2, 3], [5, 5, 5], [7, 8, 9],[5,5,5],[1,2,3,],[1,2,4]])
'''
使用pytorch实现对于任意shape的torch.tensor,如果其中的element不等于5则为0,等于5则保留原数值
实现该功能的两种方式,并比较两种实现方式的速度
'''

# x[x!=5]=1
def t2(x):
  x[x!=5]=0
  return x
def t(x):
  zeros=torch.zeros(x.shape)
  # ones=torch.ones(x.shape)
  x=torch.where(x!=5,zeros,x)
  return x

t2_start=time.time()
t2=t2(x)
t2_end=time.time()

t_start=time.time()
t=t(x)
t_end=time.time()
print(t2,t)
print(torch.sum(t-t2))

print('using x[x!=5]=0 time:',t2_end-t2_start)
print('using torch.where time:',t_end-t_start)
'''
tensor([[0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [0., 0., 0.]]) tensor([[0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [0., 0., 0.]])
tensor(0.)
using x[x!=5]=0 time: 0.0010008811950683594
using torch.where time: 0.0

看来大神说的没错,果然是使用torch.where速度更快
 a[a!=5]=0 这种写法,速度比 torch.where 慢了超级多
'''

以上这篇基于torch.where和布尔索引的速度比较就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

修改Pandas的行或列的名字(重命名)

pandas.DataFrame.rename 使用函数: DataFrame.rename(mapper=None, index=None, colum...

python实现简单tftp(基于udp协议)

python实现简单tftp(基于udp协议)

本文实例为大家分享了python实现简单tftp的具体代码,供大家参考,具体内容如下 tftp是基于udp的协议 实现简单的tftp,首先要有tftp的协议图。 tft...

Python 中的lambda函数介绍

Lambda函数,即Lambda 表达式(lambda expression),是一个匿名函数(不存在函数名的函数),Lambda表达式基于数学中的λ演算得名,直接对应于其中的lambd...

使用Python3内置文档高效学习以及官方中文文档

概述 从前面的对Python基础知识方法介绍中,我们几乎是围绕Python内置方法进行探索实践,比如字符串、列表、字典等数据结构的内置方法,和大量内置的标准库,诸如functools、...

python实现归并排序算法

归并排序是典型的分治法的应用 思想:先递归分解数组,再合并数组 原理:将数组分解最小之后,然后合并两个有序数组,基本思想是比较两个数组的最前面的数,谁小就取谁,取完后,将相应的指针后移以...