pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解

yipeiwu_com6年前Python基础

如题:只需要给定输出特征图的大小就好,其中通道数前后不发生变化。具体如下:

AdaptiveAvgPool2d

CLASStorch.nn.AdaptiveAvgPool2d(output_size)[SOURCE]

Applies a 2D adaptive average pooling over an input signal composed of several input planes.

The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.

Parameters

output_size – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a int, or None which means the size will be the same as that of the input.

Examples

>>> # target output size of 5x7
>>> m = nn.AdaptiveAvgPool2d((5,7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveAvgPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> input = torch.randn(1, 3, 3, 3)
>>> input
tensor([[[[ 0.6574, 1.5219, -1.3590],
   [-0.1561, 2.7337, -1.8701],
   [-0.8572, 1.0238, -1.9784]],
 
   [[ 0.4284, 1.4862, 0.3352],
   [-0.7796, -0.8020, -0.1243],
   [-1.2461, -1.7069, 0.1517]],
 
   [[ 1.4593, -0.1287, 0.5369],
   [ 0.6562, 0.0616, 0.2611],
   [-1.0301, 0.4097, -1.9269]]]])
>>> m = nn.AdaptiveAvgPool2d((2, 2))
>>> output = m(input)
>>> output
tensor([[[[ 1.1892, 0.2566],
   [ 0.6860, -0.0227]],
 
   [[ 0.0833, 0.2238],
   [-1.1337, -0.6204]],
 
   [[ 0.5121, 0.1827],
   [ 0.0243, -0.2986]]]])
>>> 0.6574+1.5219+2.7337-0.1561
4.7569
>>> 4.7569/4
1.189225
>>> 

以上这篇pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

分享Pycharm中一些不为人知的技巧

分享Pycharm中一些不为人知的技巧

工欲善其事必先利其器,Pycharm 是最受欢迎的Python开发工具,它提供的功能非常强大,是构建大型项目的理想工具之一,如果能挖掘出里面实用技巧,能带来事半功倍的效果。 以下操作都是...

解决python中的幂函数、指数函数问题

最近在调代码,碰到幂函数、指数函数,总是提示 ValueError: math domain error ValueError: negative number cannot be ra...

对Python中的条件判断、循环以及循环的终止方法详解

对Python中的条件判断、循环以及循环的终止方法详解

条件判断 条件语句是用来判断给定条件是否满足,并根据判断所得结果从而决定所要执行的操作,通常的逻辑思路如下图; 单次判断 形式 if <判断条件>: <执行&g...

Python实现简单多线程任务队列

最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题。梯度下降算法的代码如下(伪代码): def gradient_descent(): # the gradie...

以一个投票程序的实例来讲解Python的Django框架使用

(一)关于Django     Django是一个基于MVC构造的框架。但是在Django中,控制器接受用户输入的部分由框架自行处理,所以 Django 里...