tensorflow之获取tensor的shape作为max_pool的ksize实例

yipeiwu_com5年前Python基础

实验发现,tensorflow的tensor张量的shape不支持直接作为tf.max_pool的参数,比如下面这种情况(一个错误的示范):

self.max_pooling1 = tf.nn.max_pool(self.l_6, ksize = [1, tf.shape(self.F1)[0], 1, 1], strides = [1, 1, 1, 1], padding = 'VALID', name = 'maxpool1')

我在max_pool的过程中想对特征每一列进行max_pooling,但因为tensor F1张量没有值,而ksize此处需要一个int类型的常量,所以tf.shape(self.F1)[0]无法作为ksize的参数。

一些人的做法是固定行数,比如pointnet固定为2048个点,但这样做需要重新采样,过于麻烦。

而既然tensorflow不提供标准的max_pool层实现,其实可以自己实现每一列取最大值的操作,充当自己的max_pool。如下图所示:

def max_pooling(self, NC):
    out = tf.reduce_max(NC, reduction_indices=[0])
    return out

利用reduce_max刚好能实现这个操作,其中reduction_indices可以指定取哪一维的最大值。这个函数的详细功能可以参考官方文档。

这种情况和tf.reshape不同,tf.reshape是可以使用tf.shape(tensor)[i]的,可能两者对参数的要求不一样。

以上这篇tensorflow之获取tensor的shape作为max_pool的ksize实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 装饰器实现DRY(不重复代码)原则

Python装饰器是一个消除冗余的强大工具。随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能。 例如让我们看看Django web框架,该框架处理请求...

Django配置celery(非djcelery)执行异步任务和定时任务

Django配置celery(非djcelery)执行异步任务和定时任务

所有演示均基于Django2.0 celery是一个基于python开发的简单、灵活且可靠的分布式任务队列框架,支持使用任务队列的方式在分布式的机器/进程/线程上执行任务调度。采用典型的...

对python requests发送json格式数据的实例详解

requests是常用的请求库,不管是写爬虫脚本,还是测试接口返回数据等。都是很简单常用的工具。 这里就记录一下如何用requests发送json格式的数据,因为一般我们post参数,都...

Python列表和元组的定义与使用操作示例

Python列表和元组的定义与使用操作示例

本文实例讲述了Python列表和元组的定义与使用操作。分享给大家供大家参考,具体如下: #coding=utf8 print ''''' 可以将列表和元组当成普通的“数组”,它能保存...

在Windows8上的搭建Python和Django环境

在Windows8上的搭建Python和Django环境

先从搭建环境开始。作为一个Python初学者来说,一个趁手的编译器是很重要的,本想用VS来开发Python,但是感觉实际开发中没有几家公司会用VS来开发Python,没办法就换成了MyE...