对tensorflow中的strides参数使用详解

yipeiwu_com5年前Python基础

在二维卷积函数tf.nn.conv2d(),最大池化函数tf.nn.max_pool(),平均池化函数

tf.nn.avg_pool()中,卷积核的移动步长都需要制定一个参数strides(步长),因为无论是卷积操作还是各种类型的池化操作,都是某种形式的滑动窗口(sliding window)处理,这就要求指定从当前窗口移动下一个窗口位置的移动步长。

TensorFlow 文档关于 strides的说明如下:

strides: A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor.

首先要求 strides 为长度不小于 4 的整数构成的 list,strides参数表示的是滑窗在输入张量各个维度上的移动步长。

如果strides=[b,h,w,c],其中strides[0]和strides[3]默认为1。

具体什么含义呢?

一般而言,对于输入张量(input tensor)有四维信息:[batch, height, width, channels](分别表示 batch_size, 也即样本的数目,单个样本的行数和列数,样本的频道数,rgb图像就是三维的,灰度图像则是一维),对于一个二维卷积操作而言,其主要作用在 height, width上。

strides参数确定了滑动窗口在各个维度上移动的步数。一种常用的经典设置就是要求,strides[0]=strides[3]=1。

strides[0]=1,表示在 batch 维度上移动为 1,指不跳过任何一个样本,每一个样本都会进行运算

strides[1] = 1,表示在高度上移动步长为1,这个可以自己设定,根据网络的结构合理调节

strides[2] = 1,表示在宽度上的移动步长为1,这个可以自己设定,根据网络的结构合理调节

strides[3] = 1,表示在 channels 维度上移动为 1,指不跳过任何一个颜色通道,每一个通道都会进行运算

以上这篇对tensorflow中的strides参数使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python操作CouchDB数据库简单示例

安装python couchDb库: https://pypi.python.org/pypi/CouchDB/0.10 连接服务器 复制代码 代码如下: >>> im...

Python实现端口检测的方法

Python实现端口检测的方法

一、背景: 在平时工作中有遇到端口检测,查看服务端特定端口是否对外开放,常用nmap,tcping,telnet等,同时也可以利用站长工具等web扫描端口等。 但是在使用站长工具发现:...

基于Python对象引用、可变性和垃圾回收详解

基于Python对象引用、可变性和垃圾回收详解

变量不是盒子 在示例所示的交互式控制台中,无法使用“变量是盒子”做解释。图说明了在 Python 中为什么不能使用盒子比喻,而便利贴则指出了变量的正确工作方式。 变量 a 和 b 引用同...

python ElementTree 基本读操作示例

示例可以附件中下载 1.加载xml文件 加载XML文件共有2种方法,一是加载指定字符串,二是加载指定文件 2.获取element的方法 a) 通过getiterator b) 过 get...

Python的地形三维可视化Matplotlib和gdal使用实例

Python的地形三维可视化Matplotlib和gdal使用实例

我是以Python开门的,我还是觉得Python也可以进行地形三维可视化,当然这里需要借助第三方库,so,我就来介绍:Python一个很重要可视化插件,Matplotlib。 Matpl...