tensorflow实现tensor中满足某一条件的数值取出组成新的tensor

yipeiwu_com6年前Python基础

首先使用tf.where()将满足条件的数值索引取出来,在numpy中,可以直接用矩阵引用索引将满足条件的数值取出来,但是在tensorflow中这样是不行的。所幸,tensorflow提供了tf.gather()和tf.gather_nd()函数。

看下面这一段代码:

import tensorflow as tf
sess = tf.Session()
def get_tensor():
  x = tf.random_uniform((5, 4))
  ind = tf.where(x>0.5)
  y = tf.gather_nd(x, ind)
  return x, ind, y

在上述代码中,输出分别是原始的tensor x,x中满足特定条件(此处为>0.5)的数值的索引,以及x中满足特定条件的数值。执行以下步骤,观察三个tensor对应的数值:

x, ind, y = get_tensor()
x_, ind_, y_ = sess.run([x, ind, y])

可以得到如下结果:

可以看到,上述结果中将tensor x中大于0.5的数值取出来组成了一个新的tensor y。

如果我们将代码中的tf.gather_nd替换成tf.gather会发生什么呢?由于结果不方便展示,这里不放结果了,tf.gather适用于index为一维的情况,在本例中,index为2维,如果选用tf.gather的话,对应的x, ind, y的维数分别如下:

x.shape = (5, 4)
ind.shape = (9, 2)
y.shape = (9, 2, 4)

以上这篇tensorflow实现tensor中满足某一条件的数值取出组成新的tensor就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python求质数列表的例子

因为写别的程序想要一边遍历一边删除列表里的元素,就写了一个这样的程序进行测试,这样写出来感觉还挺简洁的,就发出来分享一下。 代码 l=list(range(2,1000)) for...

浅析PyTorch中nn.Module的使用

torch.nn.Modules 相当于是对网络某种层的封装,包括网络结构以及网络参数和一些操作 torch.nn.Module 是所有神经网络单元的基类 查看源码 初始化部分:...

python3.6使用urllib完成下载的实例

如下所示: url = u'http://tieba.baidu.com/f?kw=权利的游戏&ie=utf-8&pn=50' url = quote(url, safe =...

Django组件cookie与session的具体使用

Django组件cookie与session的具体使用

一、会话跟踪技术   1、什么是会话跟踪技术 我们需要先了解一下什么是会话!可以把会话理解为客户端与服务器之间的一次会晤,在一次会晤中可能会包含多次请求和响应。例如你给10086打个电话...

Python微信操控itchat的方法

Python微信操控itchat的方法

itchat是一个开源的微信个人号接口,使用python调用微信从未如此简单。 开源地址 https://github.com/littlecodersh/ItChat 文档: http...