Tensorflow的常用矩阵生成方式

yipeiwu_com5年前Python基础

我就废话不多说了,直接上代码吧!

#全0和全1矩阵

v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") 

v2 = tf.Variable(tf.ones([10,5]), name="v2") 
 
#填充单值矩阵 
v3 = tf.Variable(tf.fill([2,3], 9)) 

 
#常量矩阵 
v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7]) 
v4_2 = tf.constant(-1.0, shape=[2, 3]) 


# 和v4_1形状一样的全1或全0矩阵

v5_1=tf.ones_like(v4_1)

v5_2=tf.zeros_like(v4_1) 


#生成等差数列 
v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")#float32 or float64 
v7_1 = tf.range(10, 20, 3)#just int32 
 
#生成各种随机数据矩阵 

#平均分布

v8_1 = tf.Variable(tf.random_uniform([2,4], minval=0.0, maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1")) 
#正态分布

v8_2 = tf.Variable(tf.random_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2")) 

#正态分布,但是去掉2sigma外的数字

v8_3 = tf.Variable(tf.truncated_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3")) 

#把这3个行重排列
v8_5 = tf.random_shuffle([[1,2,3],[4,5,6],[6,6,6]], seed=134, name="v8_5") 

以上都是计算图中的变量,需要sess.run()以后才能成为真正的数据

存取方式是:

np.save("v1.npy",sess.run(v1))#numpy save v1 as file 
test_a = np.load("v1.npy") 
print test_a[1,2] 

这篇Tensorflow的常用矩阵生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch 获取tensor维度信息示例

我就废话不多说了,直接上代码吧! >>> import torch >>> from torch.autograd import Variable...

python实现去除下载电影和电视剧文件名中的多余字符的方法

python实现去除下载电影和电视剧文件名中的多余字符的方法

本文实例讲述了python实现去除下载电影和电视剧文件名中的多余字符的方法,是一个非常实用的技巧,分享给大家供大家参考。具体如下: 有时候我们讨厌下载电影和电视剧文件名中的多余字符(如网...

使用Python的Treq on Twisted来进行HTTP压力测试

从事API相关的工作很有挑战性,在高峰期保持系统的稳定及健壮性就是其中之一,这也是我们在Mailgun做很多压力测试的原因。 这么久以来,我们已经尝试了很多种方法,从简单的ApacheB...

python 遍历字符串(含汉字)实例详解

python 遍历字符串(含汉字)实例详解 s = "中国china" for j in s: print j 首先一个,你这个'a'是什么编码?可能不是你所想的gbk &...

python中requests使用代理proxies方法介绍

学习网络爬虫难免遇到使用代理的情况,下面介绍一下如何使用requests设置代理: 如果需要使用代理,你可以通过为任意请求方法提供 proxies 参数来配置单个请求: impor...