Tensorflow 自定义loss的情况下初始化部分变量方式

yipeiwu_com5年前Python基础

一般情况下,tensorflow里面变量初始化过程为:

  #variables ...........
  #..................... 
  init = tf.initialize_all_variables()
  sess.run(init)

这里 tf.initialize_all_variables() 会初始化所有的变量。

实际过程中,假设有a, b, c三个变量,其中a已经被初始化了,只想单独初始化b,c,那么:

  #variables ...
  ...
  init = tf.variables_initializer([b,c])
  sess.run(init)

此外,如果自行修改了optimizer,如下代码就会报错:

  #definition of variables a, b, c ...
  ....
  my_optimizer = tf.train.RMSProp(learning_rate = 0.1).minimize(my_cost)
  init = tf.variables_initializer([b,c])
  sess.run(init)

这是因为自己定义的optimizer会生成新的variables,但是在init里面并没有初始化,所以无法访问,会报错。解决方法如下:

  a = tf.Variables(...)      #line N
  temp = set(tf.all_variables()) 
  b = tf.Variables(...)
  c = tf.Variables(...) 
  #definition of my optimizer
  optimizer = tf.train.......
  init = tf.variables_initializer(set(tf.all_varialbles())-temp) # line M
  sess.run(init)

首先,temp = set(tf.all_variables()) 将该行(line N)代码之前的所有变量保存在temp中,接下来定义变量b, c,以及自定义的optimizer,然后 set(tf.all_varialbles()存储了改行(line M)之前的所有变量(包括optimizer生成的变量以及temp中所含的变量),set(tf.all_varialbles())-temp相减得到line N~M这几行定义的变量。

以上这篇Tensorflow 自定义loss的情况下初始化部分变量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

机器学习10大经典算法详解

本文为大家分享了机器学习10大经典算法,供大家参考,具体内容如下 1、C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.  C4.5算法继承了...

python实现雪花飘落效果实例讲解

python实现雪花飘落效果实例讲解

在学习pygame模块过程中,我们可以通过使用 pygame模块实现很多功能性的东西,但是很多人应该没有利用pygame实现过雪花飘落的效果吧,有时候可能是不知道从何入手或者是没有时间写...

python中OrderedDict的使用方法详解

很多人认为python中的字典是无序的,因为它是按照hash来存储的,但是python中有个模块collections(英文,收集、集合),里面自带了一个子类 OrderedDict,实...

tensorflow estimator 使用hook实现finetune方式

为了实现finetune有如下两种解决方案: model_fn里面定义好模型之后直接赋值 def model_fn(features, labels, mode, params):...

python3 tcp的粘包现象和解决办法解析

这篇文章主要介绍了python3 tcp的粘包现象和解决办法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 服务器端 impo...