PyTorch中 tensor.detach() 和 tensor.data 的区别详解

yipeiwu_com5年前Python基础

PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 。

.detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候.

举例:

tensor.data

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.data
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的数值被c.zero_()修改
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 反向传播
>>> a.grad    # 这个结果很严重的错误,因为out已经改变了
tensor([ 0., 0., 0.])

tensor.detach()

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.detach()
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的值被c.zero_()修改 !!
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 需要原来out得值,但是已经被c.zero_()覆盖了,结果报错
RuntimeError: one of the variables needed for gradient
computation has been modified by an

以上这篇PyTorch中 tensor.detach() 和 tensor.data 的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

解决python super()调用多重继承函数的问题

当类间继承关系很简单时,super()的使用很简单。 class A(object): def __init__(self): print('a') class B(A...

python设计微型小说网站(基于Django+Bootstrap框架)

python设计微型小说网站(基于Django+Bootstrap框架)

一、项目背景: 为了回顾关于django的文件上传和分页功能,打算写一个微型的小说网站练练手。花了一个下午的时间,写了个小项目,发现其中其实遇到了许多问题,不过大部分通过debug之后...

Python绘制3D图形

Python绘制3D图形

3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3...

flask-socketio实现WebSocket的方法

【flask-socektio】 之前不知道在哪个场合下提到过如何从web后台向前台推送消息。听闻了反向ajax技术这种模式之后,大呼神奇,试了一下之后发现也确实可以用。不过,反向aj...

Python中方法链的使用方法

方法链(method chaining)是面向对象的编程语言中的一种常见语法,可以让开发者在只引用对象一次的情况下,对同一个对象进行多次方法调用。举个例子: 假设我们有一个Foo类,其中...