解决torch.autograd.backward中的参数问题

yipeiwu_com5年前Python基础

torch.autograd.backward(variables, grad_variables=None, retain_graph=None, create_graph=False)

给定图的叶子节点variables, 计算图中变量的梯度和。 计算图可以通过链式法则求导。如果variables中的任何一个variable是 非标量(non-scalar)的,且requires_grad=True。那么此函数需要指定grad_variables,它的长度应该和variables的长度匹配,里面保存了相关variable的梯度(对于不需要gradient tensor的variable,None是可取的)。

此函数累积leaf variables计算的梯度。你可能需要在调用此函数之前将leaf variable的梯度置零。

参数:

variables(变量的序列) - 被求微分的叶子节点,即 ys 。

grad_variables((张量,变量)的序列或无) - 对应variable的梯度。仅当variable不是标量且需要求梯度的时候使用。

retain_graph(bool,可选) - 如果为False,则用于释放计算grad的图。请注意,在几乎所有情况下,没有必要将此选项设置为True,通常可以以更有效的方式解决。默认值为create_graph的值。

create_graph(bool,可选) - 如果为True,则将构造派生图,允许计算更高阶的派生产品。默认为False。

我这里举一个官方的例子

import torch
from torch.autograd import Variable
x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3
out = z.mean()
out.backward()#这里是默认情况,相当于out.backward(torch.Tensor([1.0]))
print(x.grad)

输出结果是

Variable containing:
 4.5000 4.5000
 4.5000 4.5000
[torch.FloatTensor of size 2x2]

接着我们继续

x = torch.randn(3)
x = Variable(x, requires_grad=True)

y = x * 2
while y.data.norm() < 1000:
  y = y * 2

gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradients)
print(x.grad)

输出结果是

Variable containing:
 204.8000
 2048.0000
  0.2048
[torch.FloatTensor of size 3]

这里这个gradients为什么要是[0.1, 1.0, 0.0001]?

如果输出的多个loss权重不同的话,例如有三个loss,一个是x loss,一个是y loss,一个是class loss。那么很明显的不可能所有loss对结果影响程度都一样,他们之间应该有一个比例。那么比例这里指的就是[0.1, 1.0, 0.0001],这个问题中的loss对应的就是上面说的y,那么这里的输出就很好理解了dy/dx=0.1*dy1/dx+1.0*dy2/dx+0.0001*dy3/dx。

如有问题,希望大家指正,谢谢_!

以上这篇解决torch.autograd.backward中的参数问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3中的列表生成式、生成器与迭代器实例详解

本文实例讲述了Python3中的列表生成式、生成器与迭代器。分享给大家供大家参考,具体如下: 列表生成式 Python内置的一种极其强大的生成列表 list 的表达式。返回结果必须是列表...

python监控nginx端口和进程状态

本文实例为大家分享了python监控nginx端口和进程状态的具体代码,供大家参考,具体内容如下 #!/usr/local/bin/python # coding:utf-8 imp...

python实现根据ip地址反向查找主机名称的方法

本文实例讲述了python实现根据ip地址反向查找主机名称的方法。分享给大家供大家参考。具体如下: import sys, socket try: result = socket...

使用Python和Prometheus跟踪天气的使用方法

开源监控系统 Prometheus 集成了跟踪多种类型的时间序列数据,但如果没有集成你想要的数据,那么很容易构建一个。一个经常使用的例子使用云端提供商的自定义集成,它使用提供商的 API...

Python 最强编辑器详细使用指南(PyCharm )

Python 最强编辑器详细使用指南(PyCharm )

作者:Jahongir Rahmonov 机器之心编译 参与:魔王 PyCharm 是一种 Python IDE,可以帮助程序员节约时间,提高生产效率。那么具体如何使用呢?本文从 PyC...