Pytorch DataLoader 变长数据处理方式

yipeiwu_com6年前Python基础

关于Pytorch中怎么自定义Dataset数据集类、怎样使用DataLoader迭代加载数据,这篇官方文档已经说得很清楚了,这里就不在赘述。

现在的问题:有的时候,特别对于NLP任务来说,输入的数据可能不是定长的,比如多个句子的长度一般不会一致,这时候使用DataLoader加载数据时,不定长的句子会被胡乱切分,这肯定是不行的。

解决方法是重写DataLoader的collate_fn,具体方法如下:

# 假如每一个样本为:
sample = {
	# 一个句子中各个词的id
	'token_list' : [5, 2, 4, 1, 9, 8],
	# 结果y
	'label' : 5,
}


# 重写collate_fn函数,其输入为一个batch的sample数据
def collate_fn(batch):
	# 因为token_list是一个变长的数据,所以需要用一个list来装这个batch的token_list
  token_lists = [item['token_list'] for item in batch]
  
  # 每个label是一个int,我们把这个batch中的label也全取出来,重新组装
  labels = [item['label'] for item in batch]
  # 把labels转换成Tensor
  labels = torch.Tensor(labels)
  return {
    'token_list': token_lists,
    'label': labels,
  }


# 在使用DataLoader加载数据时,注意collate_fn参数传入的是重写的函数
DataLoader(trainset, batch_size=4, shuffle=True, num_workers=4, collate_fn=collate_fn)

使用以上方法,可以保证DataLoader能Load出一个batch的数据,load出来的东西就是重写的collate_fn函数最后return出来的字典。

以上这篇Pytorch DataLoader 变长数据处理方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 内置函数memoryview(obj)的具体用法

memoryview() 函数返回给定参数的内存查看对象(Momory view)。 语法 memoryview 语法:memoryview(obj) 参数说明:obj -- 对象...

在Python的Django框架的视图中使用Session的方法

SessionMiddleware 激活后,每个传给视图(view)函数的第一个参数``HttpRequest`` 对象都有一个 session 属性,这是一个字典型的对象。 你可以象用...

在Django model中设置多个字段联合唯一约束的实例

使用Django中遇到这样一个需求,对一个表的几个字段做 联合唯一索引,例如学生表中 姓名和班级 2个字段在一起表示一个唯一记录。 Django中model部分的写法, 参见 uniqu...

让Python代码更快运行的5种方法

不论什么语言,我们都需要注意性能优化问题,提高执行效率。选择了脚本语言就要忍受其速度,这句话在某种程度上说明了Python作为脚本语言的不足之处,那就是执行效率和性能不够亮。尽管Pyth...

python读取注册表中值的方法

在Python的标准库中,_winreg.pyd可以操作Windows的注册表,另外第三方的win32库封装了大量的Windows API,使用起来也很方便。不过这里介绍的是使用_win...