python Tensor和Array对比分析

yipeiwu_com6年前Python基础

如下所示:

区别 Array Tensor
类型 uint8,float32系列 {}
各类型相互转换 uint8转float64:image = image * (2. / 255.) - 1 float64转uint8:image.astype(np.uint8) {}
扩充维度 image[np.newaxis, :] tf.expand_dims(image,axis=0)
数组拼接 np.concatenate([image, image], axis=0) tf.concat([frame,frame],axis=0)
相互转换 image.eval() tf.convert_to_tensor(image)
拼接 np.concat, np.concatenate, np.stack, image.append等 tf.stack, tf.concat

##array的一些操作

1、获取shape:score.shape #(1, 257, 257)

2、转换成list:score.get_shape().as_list() #[1, 257, 257]

3、list前再扩充一维: [1] + score.get_shape().as_list() #[1, 1, 257, 257]

4、x_crops是(1, 3, 255, 255, 3),将前两维合并:

x_crops = tf.reshape(x_crops, [x_crops_shape[0] * x_crops_shape[1]] + x_crops_shape[2: ])

5、numpy数组堆叠

z.shape本来是(1,127,127,3),想要堆叠成(3,127,127,3)

np.stack([z_crops_hog,z_crops_hog,z_crops_hog])后,变成了(3, 1, 127, 127, 3),

vstack 按行堆叠

hstack 按列堆叠

以上这篇python Tensor和Array对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python编程深度学习计算库之numpy

Python编程深度学习计算库之numpy

NumPy是python下的计算库,被非常广泛地应用,尤其是近来的深度学习的推广。在这篇文章中,将会介绍使用numpy进行一些最为基础的计算。 NumPy vs SciPy NumPy和...

Pycharm学习教程(2) 代码风格

Pycharm学习教程(2) 代码风格

如何创建一个Python工程并使其具有Pycharm的代码风格,具体如下 1、主题   这部分教程主要介绍如何创建一个Python工程并使其具有Pycharm的代码风格。你将会看到Pyc...

使用matlab或python将txt文件转为excel表格

使用matlab或python将txt文件转为excel表格

假设txt文件为: 一、matlab代码 data=importdata('data.txt'); xlswrite('data.xls',data); 二、python代码...

Python定时执行之Timer用法示例

本文实例讲述了Python定时执行之Timer用法。分享给大家供大家参考。具体分析如下: java中Timer的作用亦是如此。python中的线程提供了java线程功能的子集。 #!...

解决Pytorch训练过程中loss不下降的问题

在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题。出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等。不过除了这些常规的原因,...