python Tensor和Array对比分析

yipeiwu_com6年前Python基础

如下所示:

区别 Array Tensor
类型 uint8,float32系列 {}
各类型相互转换 uint8转float64:image = image * (2. / 255.) - 1 float64转uint8:image.astype(np.uint8) {}
扩充维度 image[np.newaxis, :] tf.expand_dims(image,axis=0)
数组拼接 np.concatenate([image, image], axis=0) tf.concat([frame,frame],axis=0)
相互转换 image.eval() tf.convert_to_tensor(image)
拼接 np.concat, np.concatenate, np.stack, image.append等 tf.stack, tf.concat

##array的一些操作

1、获取shape:score.shape #(1, 257, 257)

2、转换成list:score.get_shape().as_list() #[1, 257, 257]

3、list前再扩充一维: [1] + score.get_shape().as_list() #[1, 1, 257, 257]

4、x_crops是(1, 3, 255, 255, 3),将前两维合并:

x_crops = tf.reshape(x_crops, [x_crops_shape[0] * x_crops_shape[1]] + x_crops_shape[2: ])

5、numpy数组堆叠

z.shape本来是(1,127,127,3),想要堆叠成(3,127,127,3)

np.stack([z_crops_hog,z_crops_hog,z_crops_hog])后,变成了(3, 1, 127, 127, 3),

vstack 按行堆叠

hstack 按列堆叠

以上这篇python Tensor和Array对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

MNIST数据集转化为二维图片的实现示例

本文介绍了MNIST数据集转化为二维图片的实现示例,分享给大家,具体如下: #coding: utf-8 from tensorflow.examples.tutorials.mni...

高质量Python代码编写的5个优化技巧

如今我使用 Python 已经很长时间了,但当我回顾之前写的一些代码时,有时候会感到很沮丧。例如,最早使用 Python 时,我写了一个名为 Sudoku 的游戏(GitHub地址:ht...

Python二维码生成识别实例详解

前言 在 JavaWeb 开发中,一般使用 Zxing 来生成和识别二维码,但是,Zxing 的识别有点差强人意,不少相对模糊的二维码识别率很低。不过就最新版本的测试来说,识别率有了现...

深入浅析Python 中 is 语法带来的误解

起步 Python 的成功一个原因是它的可读性,代码清晰易懂,更容易被人类所理解,但有时可读性会产生误解。 假如要判断一个变量是不是 17,那可以: if x is 17: x 是 17...

Python数据预处理之数据规范化(归一化)示例

Python数据预处理之数据规范化(归一化)示例

本文实例讲述了Python数据预处理之数据规范化。分享给大家供大家参考,具体如下: 数据规范化 为了消除指标之间的量纲和取值范围差异的影响,需要进行标准化(归一化)处理,将数据按照比例进...