python Tensor和Array对比分析

yipeiwu_com6年前Python基础

如下所示:

区别 Array Tensor
类型 uint8,float32系列 {}
各类型相互转换 uint8转float64:image = image * (2. / 255.) - 1 float64转uint8:image.astype(np.uint8) {}
扩充维度 image[np.newaxis, :] tf.expand_dims(image,axis=0)
数组拼接 np.concatenate([image, image], axis=0) tf.concat([frame,frame],axis=0)
相互转换 image.eval() tf.convert_to_tensor(image)
拼接 np.concat, np.concatenate, np.stack, image.append等 tf.stack, tf.concat

##array的一些操作

1、获取shape:score.shape #(1, 257, 257)

2、转换成list:score.get_shape().as_list() #[1, 257, 257]

3、list前再扩充一维: [1] + score.get_shape().as_list() #[1, 1, 257, 257]

4、x_crops是(1, 3, 255, 255, 3),将前两维合并:

x_crops = tf.reshape(x_crops, [x_crops_shape[0] * x_crops_shape[1]] + x_crops_shape[2: ])

5、numpy数组堆叠

z.shape本来是(1,127,127,3),想要堆叠成(3,127,127,3)

np.stack([z_crops_hog,z_crops_hog,z_crops_hog])后,变成了(3, 1, 127, 127, 3),

vstack 按行堆叠

hstack 按列堆叠

以上这篇python Tensor和Array对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python并发编程多进程 互斥锁原理解析

运行多进程 每个子进程的内存空间是互相隔离的 进程之间数据不能共享的 互斥锁 但是进程之间都是运行在一个操作系统上,进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同...

在Django下创建项目以及设置settings.py教程

在Django下创建项目以及设置settings.py教程

进入虚拟环境创建目录(在虚拟环境下不要使用sudo命令) 1.在虚拟环境下安装需要的安装包(注意,不要用sudo命令,否则会安装到真实环境下) pip3 install Django==...

Python实现高效求解素数代码实例

素数是编程中经常需要用到的。 作为学习Python的示例,下面是一个高效求解一个范围内的素数的程序,不需要使用除法或者求模运算。 #coding:utf-8 #设置python...

Python中__slots__属性介绍与基本使用方法

简介 在廖雪峰的python网站上,他是这么说的 python是动态语言,它允许程序在执行过程中动态绑定属性或者方法(使用MethodTpye)。 某个实例在执行过程中绑定的属性跟方法...

Pytorch中index_select() 函数的实现理解

函数形式: index_select( dim, index ) 参数: dim:表示从第几维挑选数据,类型为int值; index:表示从第一个参数维度中的哪个...