python Tensor和Array对比分析

yipeiwu_com6年前Python基础

如下所示:

区别 Array Tensor
类型 uint8,float32系列 {}
各类型相互转换 uint8转float64:image = image * (2. / 255.) - 1 float64转uint8:image.astype(np.uint8) {}
扩充维度 image[np.newaxis, :] tf.expand_dims(image,axis=0)
数组拼接 np.concatenate([image, image], axis=0) tf.concat([frame,frame],axis=0)
相互转换 image.eval() tf.convert_to_tensor(image)
拼接 np.concat, np.concatenate, np.stack, image.append等 tf.stack, tf.concat

##array的一些操作

1、获取shape:score.shape #(1, 257, 257)

2、转换成list:score.get_shape().as_list() #[1, 257, 257]

3、list前再扩充一维: [1] + score.get_shape().as_list() #[1, 1, 257, 257]

4、x_crops是(1, 3, 255, 255, 3),将前两维合并:

x_crops = tf.reshape(x_crops, [x_crops_shape[0] * x_crops_shape[1]] + x_crops_shape[2: ])

5、numpy数组堆叠

z.shape本来是(1,127,127,3),想要堆叠成(3,127,127,3)

np.stack([z_crops_hog,z_crops_hog,z_crops_hog])后,变成了(3, 1, 127, 127, 3),

vstack 按行堆叠

hstack 按列堆叠

以上这篇python Tensor和Array对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

几种实用的pythonic语法实例代码

前言 python 是一门简单而优雅的语言,可能是过于简单了,不用花太多时间学习就能使用,其实 python 里面还有一些很好的特性,能大大简化你代码的逻辑,提高代码的可读性。 所谓Py...

Python 70行代码实现简单算式计算器解析

描述:用户输入一系列算式字符串,程序返回计算结果。 要求:不使用eval、exec函数。 实现思路:找到当前字符串优先级最高的表达式,在算术运算中,()优先级最高,则取出算式最底层的()...

Django静态资源URL STATIC_ROOT的配置方法

缘由   新手学习 Django 当配置好 HTML 页面后,就需要使用一些静态资源,如图片,JS 文件,CSS 样式等,但是 Django 里面使用这些资源并不是直接引用一下就好,还要...

Python GAE、Django导出Excel的方法

但GAE、Django并没有直接将pyExcelerator导出为Excel的方法。我的思路是先用把数据导入到Workbook和Worksheet中,如果存为文件可以直接调用Workbo...

python访问类中docstring注释的实现方法

本文实例讲述了python访问类中docstring注释的实现方法。分享给大家供大家参考。具体分析如下: python的类注释是可以通过代码访问的,这样非常利于书写说明文档 clas...