python Tensor和Array对比分析

yipeiwu_com6年前Python基础

如下所示:

区别 Array Tensor
类型 uint8,float32系列 {}
各类型相互转换 uint8转float64:image = image * (2. / 255.) - 1 float64转uint8:image.astype(np.uint8) {}
扩充维度 image[np.newaxis, :] tf.expand_dims(image,axis=0)
数组拼接 np.concatenate([image, image], axis=0) tf.concat([frame,frame],axis=0)
相互转换 image.eval() tf.convert_to_tensor(image)
拼接 np.concat, np.concatenate, np.stack, image.append等 tf.stack, tf.concat

##array的一些操作

1、获取shape:score.shape #(1, 257, 257)

2、转换成list:score.get_shape().as_list() #[1, 257, 257]

3、list前再扩充一维: [1] + score.get_shape().as_list() #[1, 1, 257, 257]

4、x_crops是(1, 3, 255, 255, 3),将前两维合并:

x_crops = tf.reshape(x_crops, [x_crops_shape[0] * x_crops_shape[1]] + x_crops_shape[2: ])

5、numpy数组堆叠

z.shape本来是(1,127,127,3),想要堆叠成(3,127,127,3)

np.stack([z_crops_hog,z_crops_hog,z_crops_hog])后,变成了(3, 1, 127, 127, 3),

vstack 按行堆叠

hstack 按列堆叠

以上这篇python Tensor和Array对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

利用matplotlib+numpy绘制多种绘图的方法实例

利用matplotlib+numpy绘制多种绘图的方法实例

前言 matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。本文将以例子的形式分析matplot中支持的,分析中常用...

如何解决django-celery启动后迅速关闭

日志中也没有打印什么明显的错误,只是显示连接了rabbitmq后就关闭了 [2019-09-11 06:08:45,729: INFO/Beat] beat: Starting......

python 用 xlwings 库 生成图表的操作方法

xlwings是一个获得BSD许可的Python库,可以很容易地从Excel调用Python,反之亦然。 它适用于Windows和Mac上的Microsoft Excel。 在官方文档里...

python3 中文乱码与默认编码格式设定方法

python默认编码格式是utf-8。在python2.7中,可以通过sys.setdefaultencoding('gbk')设定默认编码格式,而在python3.3中sys.setd...

python 创建一个保留重复值的列表的补码

给定列表a = [1,2,2,3],其子列表b = [1,2]以这样一种排序(a)==排序(b补码)的方式找到一个补全b的列表.在上面的例子中,补码将是[2,3]的列表. 使用列表解析是...