python Tensor和Array对比分析

yipeiwu_com6年前Python基础

如下所示:

区别 Array Tensor
类型 uint8,float32系列 {}
各类型相互转换 uint8转float64:image = image * (2. / 255.) - 1 float64转uint8:image.astype(np.uint8) {}
扩充维度 image[np.newaxis, :] tf.expand_dims(image,axis=0)
数组拼接 np.concatenate([image, image], axis=0) tf.concat([frame,frame],axis=0)
相互转换 image.eval() tf.convert_to_tensor(image)
拼接 np.concat, np.concatenate, np.stack, image.append等 tf.stack, tf.concat

##array的一些操作

1、获取shape:score.shape #(1, 257, 257)

2、转换成list:score.get_shape().as_list() #[1, 257, 257]

3、list前再扩充一维: [1] + score.get_shape().as_list() #[1, 1, 257, 257]

4、x_crops是(1, 3, 255, 255, 3),将前两维合并:

x_crops = tf.reshape(x_crops, [x_crops_shape[0] * x_crops_shape[1]] + x_crops_shape[2: ])

5、numpy数组堆叠

z.shape本来是(1,127,127,3),想要堆叠成(3,127,127,3)

np.stack([z_crops_hog,z_crops_hog,z_crops_hog])后,变成了(3, 1, 127, 127, 3),

vstack 按行堆叠

hstack 按列堆叠

以上这篇python Tensor和Array对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

flask利用flask-wtf验证上传的文件的方法

利用flask-wtf验证上传的文件 定义验证表单类的时候,对文件类型的字段,需要采用FileField这个类型,即wtforms.FileField。 验证器需要从flask...

ansible动态Inventory主机清单配置遇到的坑

ansible动态Inventory主机清单配置遇到的坑

坑1 : 动态主机清单配置,需要按照ansible的要求的格式返回给ansible命令的 源代码如下: 但是在ansible-playbook中使用动态主机配置文件的时候,发生了错误!!...

Python之Numpy的超实用基础详细教程

Numpy在python中属于非常常用的包,无论是机器学习搭配pandas,还是数据可视化搭配pylab都是很正常的搭配。 Numpy numpy的官方中文文档:NumPy 中文 Nu...

Python操作json的方法实例分析

Python操作json的方法实例分析

本文实例讲述了Python操作json的方法。分享给大家供大家参考,具体如下: python中对json操作方法有两种,解码loads()和编码dumps() 简单来说: impor...

python实现NB-IoT模块远程控制

本来想尝试下如果不使用运营商网络应用平台情况下,只是在服务商服务器上是否可以实现对终端完全控制,如果这样可行,那么物联网应用服务端更有灵活性。实际情况下,很难实现和运营商网络对等的处理,...