pytorch 利用lstm做mnist手写数字识别分类的实例

yipeiwu_com5年前Python基础

代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式。

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 9 08:53:25 2018
@author: www
"""
 
import sys
sys.path.append('..')
 
import torch
import datetime
from torch.autograd import Variable
from torch import nn
from torch.utils.data import DataLoader
 
from torchvision import transforms as tfs
from torchvision.datasets import MNIST
 
#定义数据
data_tf = tfs.Compose([
   tfs.ToTensor(),
   tfs.Normalize([0.5], [0.5])
])
train_set = MNIST('E:/data', train=True, transform=data_tf, download=True)
test_set = MNIST('E:/data', train=False, transform=data_tf, download=True)
 
train_data = DataLoader(train_set, 64, True, num_workers=4)
test_data = DataLoader(test_set, 128, False, num_workers=4)
 
#定义模型
class rnn_classify(nn.Module):
   def __init__(self, in_feature=28, hidden_feature=100, num_class=10, num_layers=2):
     super(rnn_classify, self).__init__()
     self.rnn = nn.LSTM(in_feature, hidden_feature, num_layers)#使用两层lstm
     self.classifier = nn.Linear(hidden_feature, num_class)#将最后一个的rnn使用全连接的到最后的输出结果
     
   def forward(self, x):
     #x的大小为(batch,1,28,28),所以我们需要将其转化为rnn的输入格式(28,batch,28)
     x = x.squeeze() #去掉(batch,1,28,28)中的1,变成(batch, 28,28)
     x = x.permute(2, 0, 1)#将最后一维放到第一维,变成(batch,28,28)
     out, _ = self.rnn(x) #使用默认的隐藏状态,得到的out是(28, batch, hidden_feature)
     out = out[-1,:,:]#取序列中的最后一个,大小是(batch, hidden_feature)
     out = self.classifier(out) #得到分类结果
     return out
     
net = rnn_classify()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adadelta(net.parameters(), 1e-1)
 
#定义训练过程
def get_acc(output, label):
  total = output.shape[0]
  _, pred_label = output.max(1)
  num_correct = (pred_label == label).sum().item()
  return num_correct / total
  
  
def train(net, train_data, valid_data, num_epochs, optimizer, criterion):
  if torch.cuda.is_available():
    net = net.cuda()
  prev_time = datetime.datetime.now()
  for epoch in range(num_epochs):
    train_loss = 0
    train_acc = 0
    net = net.train()
    for im, label in train_data:
      if torch.cuda.is_available():
        im = Variable(im.cuda()) # (bs, 3, h, w)
        label = Variable(label.cuda()) # (bs, h, w)
      else:
        im = Variable(im)
        label = Variable(label)
      # forward
      output = net(im)
      loss = criterion(output, label)
      # backward
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
 
      train_loss += loss.item()
      train_acc += get_acc(output, label)
 
    cur_time = datetime.datetime.now()
    h, remainder = divmod((cur_time - prev_time).seconds, 3600)
    m, s = divmod(remainder, 60)
    time_str = "Time %02d:%02d:%02d" % (h, m, s)
    if valid_data is not None:
      valid_loss = 0
      valid_acc = 0
      net = net.eval()
      for im, label in valid_data:
        if torch.cuda.is_available():
          im = Variable(im.cuda())
          label = Variable(label.cuda())
        else:
          im = Variable(im)
          label = Variable(label)
        output = net(im)
        loss = criterion(output, label)
        valid_loss += loss.item()
        valid_acc += get_acc(output, label)
      epoch_str = (
        "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "
        % (epoch, train_loss / len(train_data),
          train_acc / len(train_data), valid_loss / len(valid_data),
          valid_acc / len(valid_data)))
    else:
      epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " %
             (epoch, train_loss / len(train_data),
             train_acc / len(train_data)))
    prev_time = cur_time
    print(epoch_str + time_str)
    
train(net, train_data, test_data, 10, optimizer, criterion)    

以上这篇pytorch 利用lstm做mnist手写数字识别分类的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python两个内置函数 locals 和globals(学习笔记)

Python两个内置函数——locals 和globals 这两个函数主要提供,基于字典的访问局部和全局变量的方式。 在理解这两个函数时,首先来理解一下python中的名字空间概念。Py...

wxpython实现按钮切换界面的方法

wxpython实现按钮切换界面的方法

本文实例为大家分享了wxpython按钮切换界面的具体实现代码,供大家参考,具体内容如下 #-*- coding:utf-8 -*- import wx class TestF...

python的id()函数介绍

>>> a = 2.5>>> b = 2.5>>> c = b>>> a is cFalse>>>...

深入理解NumPy简明教程---数组3(组合)

前两篇文章对NumPy数组做了基本的介绍,本篇文章对NumPy数组进行较深入的探讨。首先介绍自定义类型的数组,接着数组的组合,最后介绍数组复制方面的问题。 自定义结构数组 通过NumP...

Python实现约瑟夫环问题的方法

本文实例讲述了Python实现约瑟夫环问题的方法。分享给大家供大家参考,具体如下: 题目:0,1,...,n-1这n个数字排成一个圆圈,从数字0开始每次从这个圆圈里删除第m个数字。求出这...