Pytorch保存模型用于测试和用于继续训练的区别详解

yipeiwu_com6年前Python基础

保存模型

保存模型仅仅是为了测试的时候,只需要

torch.save(model.state_dict, path)

path 为保存的路径

但是有时候模型及数据太多,难以一次性训练完的时候,而且用的还是 Adam优化器的时候, 一定要保存好训练的优化器参数以及epoch

state = { 'model': model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch': epoch }  
torch.save(state, path)

因为这里

def adjust_learning_rate(optimizer, epoch):
  lr_t = lr
  lr_t = lr_t * (0.3 ** (epoch // 2))
  for param_group in optimizer.param_groups:
    param_group['lr'] = lr_t

学习率是根据epoch变化的, 如果不保存epoch的话,基本上每次都从epoch为0开始训练,这样学习率就相当于不变了!!

恢复模型

恢复模型只用于测试的时候,

model.load_state_dict(torch.load(path))

path为之前存储模型时的路径

但是如果是用于继续训练的话,

checkpoint = torch.load(path)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']+1

依次恢复出模型 优化器参数以及epoch

以上这篇Pytorch保存模型用于测试和用于继续训练的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Django的URLconf中使用命名组的方法

在我们想要捕获的URL部分上加上小括号,Django 会将捕获的文本作为位置参数传递给视图函数。 在更高级的用法中,还可以使用 命名 正则表达式组来捕获URL,并且将其作为关键字参数传给...

深入解析Python中的descriptor描述器的作用及用法

一般来说,一个描述器是一个有“绑定行为”的对象属性(object attribute),它的访问控制被描述器协议方法重写。这些方法是 __get__(), __set__(), 和 __...

Python实现复杂对象转JSON的方法示例

本文实例讲述了Python实现复杂对象转JSON的方法。分享给大家供大家参考,具体如下: 在Python对于简单的对象转json还是比较简单的,如下: import json d =...

python执行shell获取硬件参数写入mysql的方法

本文实例讲述了python执行shell获取硬件参数写入mysql的方法。分享给大家供大家参考。具体分析如下: 最近要获取服务器各种参数,包括cpu、内存、磁盘、型号等信息。试用了Hyp...

编写Python脚本来获取Google搜索结果的示例

前一段时间一直在研究如何用python抓取搜索引擎结果,在实现的过程中遇到了很多的问题,我把我遇到的问题都记录下来,希望以后遇到同样问题的童鞋不要再走弯路。 1. 搜索引擎的选取   选...