pytorch实现mnist数据集的图像可视化及保存

yipeiwu_com5年前Python基础

如何将pytorch中mnist数据集的图像可视化及保存

导出一些库

import torch
import torchvision 
import torch.utils.data as Data 
import scipy.misc
import os
import matplotlib.pyplot as plt   
BATCH_SIZE = 50  
DOWNLOAD_MNIST = True 

数据集的准备

#训练集测试集的准备

train_data = torchvision.datasets.MNIST(root='./mnist/', train=True,transform=torchvision.transforms.ToTensor(),              
  download=DOWNLOAD_MNIST, )
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)

将训练及测试集利用dataloader进行迭代

train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), requires_grad=True).type(torch.FloatTensor)[:20]/255 
test_y = test_data.test_labels[:20]#前两千张
 #具体查看图像形式为:
 
a_data, a_label = train_data[0]
print(type(a_data))#tensor 类型
#print(a_data)
print(a_label)

#把原始图片保存至MNIST_data/raw/下
save_dir="mnist/raw/"
if os.path.exists(save_dir)is False:
 os.makedirs(save_dir)
 
for i in range(20):
 image_array,_=train_data[i]#打印第i个
 image_array=image_array.resize(28,28)
 filename=save_dir + 'mnist_train_%d.jpg' % i#保存文件的格式
 print(filename)
 print(train_data.train_labels[i])#打印出标签
 scipy.misc.toimage(image_array,cmin=0.0,cmax=1.0).save(filename)#保存图像

以上这篇pytorch实现mnist数据集的图像可视化及保存就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

树莓派实现移动拍照

驱动树莓派gpio的中间层库函数有wiringPi,BCM2835,以及PRi.GPIO,这里我选择使用Python语言开发的PRi.GPIO。 1、安装RPi.GPIO (1)先安装p...

Python数据可视化实现正态分布(高斯分布)

Python数据可视化实现正态分布(高斯分布)

正态分布(Normal distribution)又成为高斯分布(Gaussian distribution) 若随机变量X服从一个数学期望为、标准方差为的高斯分布,记为: 则其概...

使用urllib库的urlretrieve()方法下载网络文件到本地的方法

使用urllib库的urlretrieve()方法下载网络文件到本地的方法

概述 见源码 源码 # !/usr/bin/env python # -*- coding:utf-8 -*- """ 图片(文件)下载,核心方法是 urllib.urlre...

python 读取目录下csv文件并绘制曲线v111的方法

实例如下: # -*- coding: utf-8 -*- """ Spyder Editor This temporary script file is located here:...

浅谈pytorch、cuda、python的版本对齐问题

在使用深度学习模型训练的过程中,工具的准备也算是一个良好的开端吧。熟话说完事开头难,磨刀不误砍柴工,先把前期的问题搞通了,能为后期节省不少精力。 以pytorch工具为例: pytorc...