基于pytorch的lstm参数使用详解

yipeiwu_com5年前Python基础

lstm(*input, **kwargs)

将多层长短时记忆(LSTM)神经网络应用于输入序列。

参数:

input_size:输入'x'中预期特性的数量

hidden_size:隐藏状态'h'中的特性数量

num_layers:循环层的数量。例如,设置' ' num_layers=2 ' '意味着将两个LSTM堆叠在一起,形成一个'堆叠的LSTM ',第二个LSTM接收第一个LSTM的输出并计算最终结果。默认值:1

bias:如果' False',则该层不使用偏置权重' b_ih '和' b_hh '。默认值:'True'

batch_first:如果' 'True ' ',则输入和输出张量作为(batch, seq, feature)提供。默认值: 'False'

dropout:如果非零,则在除最后一层外的每个LSTM层的输出上引入一个“dropout”层,相当于:attr:'dropout'。默认值:0

bidirectional:如果‘True',则成为双向LSTM。默认值:'False'

输入:input,(h_0, c_0)

**input**of shape (seq_len, batch, input_size):包含输入序列特征的张量。输入也可以是一个压缩的可变长度序列。

see:func:'torch.nn.utils.rnn.pack_padded_sequence' 或:func:'torch.nn.utils.rnn.pack_sequence' 的细节。

**h_0** of shape (num_layers * num_directions, batch, hidden_size):张量包含批处理中每个元素的初始隐藏状态。

如果RNN是双向的,num_directions应该是2,否则应该是1。

**c_0** of shape (num_layers * num_directions, batch, hidden_size):张量包含批处理中每个元素的初始单元格状态。

如果没有提供' (h_0, c_0) ',则**h_0**和**c_0**都默认为零。

输出:output,(h_n, c_n)

**output**of shape (seq_len, batch, num_directions * hidden_size) :包含LSTM最后一层输出特征' (h_t) '张量,

对于每个t. If a:class: 'torch.nn.utils.rnn.PackedSequence' 已经给出,输出也将是一个打包序列。

对于未打包的情况,可以使用'output.view(seq_len, batch, num_directions, hidden_size)',正向和反向分别为方向' 0 '和' 1 '。

同样,在包装的情况下,方向可以分开。

**h_n** of shape (num_layers * num_directions, batch, hidden_size):包含' t = seq_len '隐藏状态的张量。

与*output*类似, the layers可以使用以下命令分隔

h_n.view(num_layers, num_directions, batch, hidden_size) 对于'c_n'相似

**c_n** (num_layers * num_directions, batch, hidden_size):张量包含' t = seq_len '的单元状态

所有的权重和偏差都初始化自: where:

include:: cudnn_persistent_rnn.rst
import torch
import torch.nn as nn
 
# 双向rnn例子
# rnn = nn.RNN(10, 20, 2)
# input = torch.randn(5, 3, 10)
# h0 = torch.randn(2, 3, 20)
# output, hn = rnn(input, h0)
# print(output.shape,hn.shape)
# torch.Size([5, 3, 20]) torch.Size([2, 3, 20])
 
# 双向lstm例子
rnn = nn.LSTM(10, 20, 2)   #(input_size,hidden_size,num_layers)
input = torch.randn(5, 3, 10)  #(seq_len, batch, input_size)
h0 = torch.randn(2, 3, 20)    #(num_layers * num_directions, batch, hidden_size)
c0 = torch.randn(2, 3, 20)    #(num_layers * num_directions, batch, hidden_size)
# output:(seq_len, batch, num_directions * hidden_size)
# hn,cn(num_layers * num_directions, batch, hidden_size)
output, (hn, cn) = rnn(input, (h0, c0)) 
 
print(output.shape,hn.shape,cn.shape)
>>>torch.Size([5, 3, 20]) torch.Size([2, 3, 20]) torch.Size([2, 3, 20])

以上这篇基于pytorch的lstm参数使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python自带tkinter库实现棋盘覆盖图形界面

python自带tkinter库实现棋盘覆盖图形界面

python实现棋盘覆盖图形界面,供大家参考,具体内容如下 一、解决方案和关键代码 工具: python tkinter库 问题描述:   在一个2^k×2...

python 文件查找及内容匹配方法

需求:程序开发中有大量的接口,但在实际的使用中有一部分是没有使用的,在开发的程序中匹配这些接口名,找到哪些接口从没有使用过。将这些没有使用过的接口名保存下来。 代码结构: 结构解析: 1...

Python黑魔法@property装饰器的使用技巧解析

@property有什么用呢?表面看来,就是将一个方法用属性的方式来访问. 上代码,代码最清晰了. class Circle(object): def __init__...

Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据示例

Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据示例

本文实例讲述了Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据。分享给大家供大家参考,具体如下: 一、Logistic回归模型:   二、Logisti...

Python StringIO模块实现在内存缓冲区中读写数据

模块是用类编写的,只有一个StringIO类,所以它的可用方法都在类中。 此类中的大部分函数都与对文件的操作方法类似。 例: 复制代码 代码如下: #coding=gbk  ...