pytorch实现线性拟合方式

yipeiwu_com5年前Python基础

一维线性拟合

数据为y=4x+5加上噪音

结果:

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot as plt
from torch.autograd import Variable
import torch
from torch import nn
 
X = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
Y = 4*X + 5 + torch.rand(X.size())
 
class LinearRegression(nn.Module):
 def __init__(self):
  super(LinearRegression, self).__init__()
  self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1
 def forward(self, X):
  out = self.linear(X)
  return out
 
model = LinearRegression()
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
 
num_epochs = 1000
for epoch in range(num_epochs):
 inputs = Variable(X)
 target = Variable(Y)
 # 向前传播
 out = model(inputs)
 loss = criterion(out, target)
 
 # 向后传播
 optimizer.zero_grad() # 注意每次迭代都需要清零
 loss.backward()
 optimizer.step()
 
 if (epoch + 1) % 20 == 0:
  print('Epoch[{}/{}], loss:{:.6f}'.format(epoch + 1, num_epochs, loss.item()))
model.eval()
predict = model(Variable(X))
predict = predict.data.numpy()
plt.plot(X.numpy(), Y.numpy(), 'ro', label='Original Data')
plt.plot(X.numpy(), predict, label='Fitting Line')
plt.show()
 

多维:

from itertools import count
import torch
import torch.autograd
import torch.nn.functional as F
 
POLY_DEGREE = 3
def make_features(x):
 """Builds features i.e. a matrix with columns [x, x^2, x^3]."""
 x = x.unsqueeze(1)
 return torch.cat([x ** i for i in range(1, POLY_DEGREE+1)], 1)
 
 
W_target = torch.randn(POLY_DEGREE, 1)
b_target = torch.randn(1)
 
 
def f(x):
 return x.mm(W_target) + b_target.item()
def get_batch(batch_size=32):
 random = torch.randn(batch_size)
 x = make_features(random)
 y = f(x)
 return x, y
# Define model
fc = torch.nn.Linear(W_target.size(0), 1)
batch_x, batch_y = get_batch()
print(batch_x,batch_y)
for batch_idx in count(1):
 # Get data
 
 
 # Reset gradients
 fc.zero_grad()
 
 # Forward pass
 output = F.smooth_l1_loss(fc(batch_x), batch_y)
 loss = output.item()
 
 # Backward pass
 output.backward()
 
 # Apply gradients
 for param in fc.parameters():
  param.data.add_(-0.1 * param.grad.data)
 
 # Stop criterion
 if loss < 1e-3:
  break
 
 
def poly_desc(W, b):
 """Creates a string description of a polynomial."""
 result = 'y = '
 for i, w in enumerate(W):
  result += '{:+.2f} x^{} '.format(w, len(W) - i)
 result += '{:+.2f}'.format(b[0])
 return result
 
 
print('Loss: {:.6f} after {} batches'.format(loss, batch_idx))
print('==> Learned function:\t' + poly_desc(fc.weight.view(-1), fc.bias))
print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))

以上这篇pytorch实现线性拟合方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现dnspod自动更新dns解析的方法

复制代码 代码如下:def ddns():"""用当前ip更新ddns"""headers = {"Content-type": "application/x-www-form-urle...

在Windows系统上搭建Nginx+Python+MySQL环境的教程

在Windows系统上搭建Nginx+Python+MySQL环境的教程

1 安装nginx 下载windows上的nginx最新版本,http://www.nginx.org/en/download.html。 解压后即可。 运行nginx.exe后本地打开...

python3利用venv配置虚拟环境及过程中的小问题小结

python3利用venv配置虚拟环境及过程中的小问题小结

在利用python进行flask等开发过程中经常需要配置虚拟环境以方便针对不同的项目需求配置不同的生产环境。在python3.3之前,需要利用virtualenv等工具来实现python...

Python之list对应元素求和的方法

本次分享将讲述如何在Python中对多个list的对应元素求和,前提是每个list的长度一样。比如:a=[1,2,3], b=[2,3,4], c=[3,4,5], 对a,b,c的对应元...

Python csv模块使用方法代码实例

这篇文章主要介绍了Python csv模块使用方法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import csv d...