pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python编程中的反模式实例分析

本文实例讲述了Python编程中的反模式。分享给大家供大家参考。具体分析如下: Python是时下最热门的编程语言之一了。简洁而富有表达力的语法,两三行代码往往就能解决十来行C代码才能解...

Flask框架通过Flask_login实现用户登录功能示例

Flask框架通过Flask_login实现用户登录功能示例

本文实例讲述了Flask框架通过Flask_login实现用户登录功能。分享给大家供大家参考,具体如下: 通过Flask_Login实现用户验证登录,并通过login_required装...

书单|人生苦短,你还不用python!

书单|人生苦短,你还不用python!

前言 在编程语言中, Python 长期稳居前五,不仅已经成为数据分析、人工智能领域必不可少的工具,还被越来越多地公司用于网站搭建。Python 方向岗位的薪水在水涨船高,成为目前最有潜...

python数据结构之图的实现方法

本文实例讲述了python数据结构之图的实现方法。分享给大家供大家参考。具体如下: 下面简要的介绍下: 比如有这么一张图:     A -> B &n...

高质量Python代码编写的5个优化技巧

如今我使用 Python 已经很长时间了,但当我回顾之前写的一些代码时,有时候会感到很沮丧。例如,最早使用 Python 时,我写了一个名为 Sudoku 的游戏(GitHub地址:ht...