pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python通过yield实现数组全排列的方法

本文实例讲述了python通过yield实现数组全排列的方法。分享给大家供大家参考。具体分析如下: 从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取...

利用python list完成最简单的DB连接池方法

利用python list完成最简单的DB连接池方法

先来看查看效果: 在代码连接数据库后,并且执行三条sql后,将mysql直接重启掉,故我们的连接池连接均是不ok的,所以,它会全部删除再抓新的连接下来,重启mysql命令: 关于py...

python机器学习之神经网络(二)

python机器学习之神经网络(二)

由于Rosenblatt感知器的局限性,对于非线性分类的效果不理想。为了对线性分类无法区分的数据进行分类,需要构建多层感知器结构对数据进行分类,多层感知器结构如下: 该网络由输入层,...

wxPython+Matplotlib绘制折线图表

wxPython+Matplotlib绘制折线图表

使用Matplotlib在wxPython的Panel上绘制曲线图,需要导入: import numpy from matplotlib.backends.backend_wxagg...

python实现解数独程序代码

python实现解数独程序代码

偶然发现linux系统附带的一个数独游戏,打开玩了几把。无奈是个数独菜鸟,以前没玩过,根本就走不出几步就一团浆糊了。 于是就打算借助计算机的强大运算力来暴力解数独,还是很有乐趣的。 下面...