pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python利用Beautiful Soup模块搜索内容详解

前言 我们将利用 Beautiful Soup 模块的搜索功能,根据标签名称、标签属性、文档文本和正则表达式来搜索。 搜索方法 Beautiful Soup 内建的搜索方法如下:...

PyTorch中topk函数的用法详解

PyTorch中topk函数的用法详解

听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index。 用法 torch.topk(input, k, dim=None, largest=...

python3实现斐波那契数列(4种方法)

基础版(list方法) # 比较占内存 w = int(input("输入一个数字还你一个斐波那契数列:")) list_res = [] def list_n(n): if...

python+jinja2实现接口数据批量生成工具

python+jinja2实现接口数据批量生成工具

在做接口测试的时候,我们经常会遇到一种情况就是要对接口的参数进行各种可能的校验,手动修改很麻烦,尤其是那些接口参数有几十个甚至更多的,有没有一种方法可以批量的对指定参数做生成处理呢。 答...

Python中sorted()排序与字母大小写的问题

今天我在练习python时,对字典里的键用sorted排序时发现并没有按照预期排序 研究后发现字母大小写会影响排序 首先创建一个字典,键里面的首字母有大写有小写 favorite_...