pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python简易版停车管理系统

本文实例为大家分享了Python简易版停车管理系统的具体代码,供大家参考,具体内容如下 import time # 最大停车数 max_car = 100 # 当前停车数,初始为0...

python对列进行平移变换的方法(shift)

在进行数据操作时, 经常会碰到基于同一列进行错位相加减的操作, 即对某一列进行向上或向下平移(shift). 往常, 我们都会使用循环进行操作, 但经过查阅相关资料, 发现结合panda...

Python面向对象实现一个对象调用另一个对象操作示例

本文实例讲述了Python面向对象实现一个对象调用另一个对象操作。分享给大家供大家参考,具体如下: 我先总结一下python中的类的特点: 1.类中所有的方法的参数中都必须加self,并...

python使用tensorflow深度学习识别验证码

本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下: 除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorf...

Python读写ini文件的方法

本文实例讲述了Python读写ini文件的方法。分享给大家供大家参考。具体如下: 比如有一个文件update.ini,里面有这些内容: [ZIP] EngineVersion=0 D...