python不使用for计算两组、多个矩形两两间的iou方式

yipeiwu_com5年前Python基础

解决问题: 不使用for计算两组、多个矩形两两间的iou

使用numpy广播的方法,在python程序中并不建议使用for语句,python中的for语句耗时较多,如果使用numpy广播的思想将会提速不少。

代码:

def calc_iou(bbox1, bbox2):
 if not isinstance(bbox1, np.ndarray):
  bbox1 = np.array(bbox1)
 if not isinstance(bbox2, np.ndarray):
  bbox2 = np.array(bbox2)
 xmin1, ymin1, xmax1, ymax1, = np.split(bbox1, 4, axis=-1)
 xmin2, ymin2, xmax2, ymax2, = np.split(bbox2, 4, axis=-1)
 
 area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
 area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
 
 ymin = np.maximum(ymin1, np.squeeze(ymin2, axis=-1))
 xmin = np.maximum(xmin1, np.squeeze(xmin2, axis=-1))
 ymax = np.minimum(ymax1, np.squeeze(ymax2, axis=-1))
 xmax = np.minimum(xmax1, np.squeeze(xmax2, axis=-1))
 
 h = np.maximum(ymax - ymin, 0)
 w = np.maximum(xmax - xmin, 0)
 intersect = h * w
 
 union = area1 + np.squeeze(area2, axis=-1) - intersect
 return intersect / union

程序中输入为多个矩形[xmin, ymin, xmax,ymax]格式的数组或者list,输出为numpy格式,例:输入的shape为(3, 4)、(5,4)则输出为(3, 5)各个位置为boxes间相互的iou值。后面会卡一个iou的阈值,然后就可以将满足条件的索引取出。如:

def delete_bbox(bbox1, bbox2, roi_bbox1, roi_bbox2, class1, class2, idx1, idx2, iou_value):
 idx = np.where(iou_value > 0.4)
 left_idx = idx[0]
 right_idx = idx[1]
 left = roi_bbox1[left_idx]
 right = roi_bbox2[right_idx]
 xmin1, ymin1, xmax1, ymax1, = np.split(left, 4, axis=-1)
 xmin2, ymin2, xmax2, ymax2, = np.split(right, 4, axis=-1)
 left_area = (xmax1 - xmin1) * (ymax1 - ymin1)
 right_area = (xmax2 - xmin2) * (ymax2 - ymin2)
 left_idx = left_idx[np.squeeze(left_area < right_area, axis=-1)]#小的被删
 right_idx = right_idx[np.squeeze(left_area > right_area, axis=-1)]
 
 bbox1 = np.delete(bbox1, idx1[left_idx], 0)
 class1 = np.delete(class1, idx1[left_idx])
 bbox2 = np.delete(bbox2, idx2[right_idx], 0)
 class2 = np.delete(class2, idx2[right_idx])
 
 return bbox1, bbox2, class1, class2

IOU计算原理:

ymin = np.maximum(ymin1, np.squeeze(ymin2, axis=-1))

xmin = np.maximum(xmin1, np.squeeze(xmin2, axis=-1))

ymax = np.minimum(ymax1, np.squeeze(ymax2, axis=-1))

xmax = np.minimum(xmax1, np.squeeze(xmax2, axis=-1))

h = np.maximum(ymax - ymin, 0)

w = np.maximum(xmax - xmin, 0)

intersect = h * w

计算矩形间min的最大值,max的最小值,如果ymax-ymin值大于0则如左图所示,如果小于0则如右图所示

以上这篇python不使用for计算两组、多个矩形两两间的iou方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

TensorFlow dataset.shuffle、batch、repeat的使用详解

直接看代码例子,有详细注释!! import tensorflow as tf import numpy as np d = np.arange(0,60).reshape([6...

Python中apply函数的用法实例教程

一、概述: python apply函数的具体含义如下:   apply(func [, args [, kwargs ]]) 函数用于当函数参数已经存在于一个元组或字典中时,...

Pycharm 操作Django Model的简单运用方法

Pycharm 操作Django Model的简单运用方法

Django中的Models 是什么? 通常一个Model对应数据库的一张数据表, Django中Models以类似的形式表现, 它包含了一些基本字段以及数据的一些行为 在Dja...

Python 监测文件是否更新的方法

主要逻辑是判断文件的最后修改时间与创建时间是否在秒级别上一致,此代码适用于Python 2. import time import os #Read fime name FileN...

Python循环语句之break与continue的用法

Python循环语句之break与continue的用法

Python break 语句 Python break语句,就像在C语言中,打破了最小封闭for或while循环。 break语句用来终止循环语句,即循环条件没有False条件或者序列...