Pytorch 计算误判率,计算准确率,计算召回率的例子

yipeiwu_com5年前Python基础

无论是官方文档还是各位大神的论文或搭建的网络很多都是计算准确率,很少有计算误判率,

下面就说说怎么计算准确率以及误判率、召回率等指标

1.计算正确率

获取每批次的预判正确个数

train_correct = (pred == batch_y.squeeze(1)).sum()

该语句的意思是 预测的标签与实际标签相等的总数

获取训练集总的预判正确个数

train_acc += train_correct.data[0] #用来计算正确率

准确率 : train_acc / (len(train_data))

2.误判率

举例:当你是二分类时,你需要计算 原标签为1,但预测为 0 ,以及 原标签为0,预测为1的 误判率

误判率又分为:

CTW : correct to wrong 标签为正确的,预测为错误的

WTC: wrong to correct 标签为错误的,预测为正确的

zes=Variable(torch.zeros(lasize).type(torch.LongTensor))#全0变量

ons=Variable(torch.ones(lasize).type(torch.LongTensor))#全1变量

train_correct01 = ((pred==zes)&(batch_y.squeeze(1)==ons)).sum() #原标签为1,预测为 0 的总数

train_correct10 = ((pred==ons)&(batch_y.squeeze(1)==zes)).sum() #原标签为0,预测为1 的总数

train_correct11 = ((pred_y==ons)&(batch_y.squeeze(1)==ons)).sum()
train_correct00 = ((pred_y==zes)&(batch_y.squeeze(1)==zes)).sum()

获取训练集总的误判个数

FN += train_correct01.data[0]

FP += train_correct10.data[0]

TP += train_correct11.data[0]
TN += train_correct00.data[0]

误判率 :

(FN+FP)/(len(train_data)) #CTW+WTC

3.精准率和召回率


精准率: P = TP/ (TP+FP)
召回率: R = TP/ (TP+FN)


4.真正例率和假正例率

真正例率:TPR = TP/ (TP+FN)
假正例率:FPR =FP/ (FP+TN)

最后,当你要计算多分类的误判率时,只需在二分类的基础上类推即可

以上这篇Pytorch 计算误判率,计算准确率,计算召回率的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python骚操作之动态定义函数

在 Python 中,没有可以在运行时简化函数定义的语法糖。然而,这并不意味着它就不可能,或者是难以实现。 from types import FunctionType foo_c...

python+opencv 读取文件夹下的所有图像并批量保存ROI的方法

如下所示: import cv2 import os import numpy as np root_path = "I:/Images/2017_08_03/" dir =...

Python的垃圾回收机制深入分析

一、概述: Python的GC模块主要运用了“引用计数”(reference counting)来跟踪和回收垃圾。在引用计数的基础上,还可以通过“标记-清除”(mark and swee...

使用Python的Twisted框架编写简单的网络客户端

Protocol   和服务器一样,也是通过该类来实现。先看一个简短的例程: from twisted.internet.protocol import Protocol...

Python图像滤波处理操作示例【基于ImageFilter类】

Python图像滤波处理操作示例【基于ImageFilter类】

本文实例讲述了Python图像滤波处理操作。分享给大家供大家参考,具体如下: 在图像处理中,经常需要对图像进行平滑、锐化、边界增强等滤波处理。在使用PIL图像处理库时,我们通过Image...