Pytorch 计算误判率,计算准确率,计算召回率的例子

yipeiwu_com5年前Python基础

无论是官方文档还是各位大神的论文或搭建的网络很多都是计算准确率,很少有计算误判率,

下面就说说怎么计算准确率以及误判率、召回率等指标

1.计算正确率

获取每批次的预判正确个数

train_correct = (pred == batch_y.squeeze(1)).sum()

该语句的意思是 预测的标签与实际标签相等的总数

获取训练集总的预判正确个数

train_acc += train_correct.data[0] #用来计算正确率

准确率 : train_acc / (len(train_data))

2.误判率

举例:当你是二分类时,你需要计算 原标签为1,但预测为 0 ,以及 原标签为0,预测为1的 误判率

误判率又分为:

CTW : correct to wrong 标签为正确的,预测为错误的

WTC: wrong to correct 标签为错误的,预测为正确的

zes=Variable(torch.zeros(lasize).type(torch.LongTensor))#全0变量

ons=Variable(torch.ones(lasize).type(torch.LongTensor))#全1变量

train_correct01 = ((pred==zes)&(batch_y.squeeze(1)==ons)).sum() #原标签为1,预测为 0 的总数

train_correct10 = ((pred==ons)&(batch_y.squeeze(1)==zes)).sum() #原标签为0,预测为1 的总数

train_correct11 = ((pred_y==ons)&(batch_y.squeeze(1)==ons)).sum()
train_correct00 = ((pred_y==zes)&(batch_y.squeeze(1)==zes)).sum()

获取训练集总的误判个数

FN += train_correct01.data[0]

FP += train_correct10.data[0]

TP += train_correct11.data[0]
TN += train_correct00.data[0]

误判率 :

(FN+FP)/(len(train_data)) #CTW+WTC

3.精准率和召回率


精准率: P = TP/ (TP+FP)
召回率: R = TP/ (TP+FN)


4.真正例率和假正例率

真正例率:TPR = TP/ (TP+FN)
假正例率:FPR =FP/ (FP+TN)

最后,当你要计算多分类的误判率时,只需在二分类的基础上类推即可

以上这篇Pytorch 计算误判率,计算准确率,计算召回率的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python常见数制转换实例分析

本文实例讲述了python常见数制转换用法。分享给大家供大家参考。具体分析如下: 1.进位制度 Python中二进制是以0b开头的: 例如: 0b11 则表示十进制的3 8进制是以0开头...

深入理解Javascript中的this关键字

自从接触javascript以来,对this参数的理解一直是模棱两可。虽有过深入去理解,但却也总感觉是那种浮于表面,没有完全理清头绪。 但对于this参数,确实会让人产生很多误解。那么t...

python多进程并行代码实例

python多进程并行代码实例

这篇文章主要介绍了python多进程并行代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码: from multipro...

Python设计模式之备忘录模式原理与用法详解

Python设计模式之备忘录模式原理与用法详解

本文实例讲述了Python设计模式之备忘录模式原理与用法。分享给大家供大家参考,具体如下: 备忘录模式(Memento Pattern):不破坏封装性的前提下捕获一个对象的内部状态,并在...

Python列表推导式、字典推导式与集合推导式用法实例分析

本文实例讲述了Python列表推导式、字典推导式与集合推导式用法。分享给大家供大家参考,具体如下: 推导式comprehensions(又称解析式),是Python的一种独有特性。推导式...