python实现在一个画布上画多个子图

yipeiwu_com6年前Python基础

matplotlib 是可以组合许多的小图, 放在一张大图里面显示的. 使用到的方法叫作 subplot.

均匀画图

使用import导入matplotlib.pyplot模块, 并简写成plt. 使用plt.figure创建一个图像窗口.

import matplotlib.pyplot as plt
 
plt.figure()

使用plt.subplot来创建小图. plt.subplot(2,2,1)表示将整个图像窗口分为2行2列, 当前位置为1. 使用plt.plot([0,1],[0,1])在第1个位置创建一个小图.

plt.subplot(2,2,1)
plt.plot([0,1],[0,1])

plt.subplot(2,2,2)表示将整个图像窗口分为2行2列, 当前位置为2. 使用plt.plot([0,1],[0,2])在第2个位置创建一个小图.

plt.subplot(2,2,2)
plt.plot([0,1],[0,2])

plt.subplot(2,2,3)表示将整个图像窗口分为2行2列,当前位置为3. plt.subplot(2,2,3)可以简写成plt.subplot(223), matplotlib同样可以识别. 使用plt.plot([0,1],[0,3])在第3个位置创建一个小图.

plt.subplot(223)
plt.plot([0,1],[0,3])

plt.subplot(224)表示将整个图像窗口分为2行2列, 当前位置为4. 使用plt.plot([0,1],[0,4])在第4个位置创建一个小图.

plt.subplot(224)
plt.plot([0,1],[0,4])
 
plt.show() # 展示

不均匀画图

如果希望展示的小图的大小不相同, 应该怎么做呢? 以上面的4个小图为例, 如果把第1个小图放到第一行, 而剩下的3个小图都放到第二行.

使用plt.subplot(2,1,1)将整个图像窗口分为2行1列, 当前位置为1. 使用plt.plot([0,1],[0,1])在第1个位置创建一个小图.

plt.subplot(2,1,1)
plt.plot([0,1],[0,1])

使用plt.subplot(2,3,4)将整个图像窗口分为2行3列, 当前位置为4. 使用plt.plot([0,1],[0,2])在第4个位置创建一个小图.

plt.subplot(2,3,4)
plt.plot([0,1],[0,2])

这里需要解释一下为什么第4个位置放第2个小图. 上一步中使用plt.subplot(2,1,1)将整个图像窗口分为2行1列, 第1个小图占用了第1个位置, 也就是整个第1行. 这一步中使用plt.subplot(2,3,4)将整个图像窗口分为2行3列, 于是整个图像窗口的第1行就变成了3列, 也就是成了3个位置, 于是第2行的第1个位置是整个图像窗口的第4个位置.

使用plt.subplot(235)将整个图像窗口分为2行3列,当前位置为5. 使用plt.plot([0,1],[0,3])在第5个位置创建一个小图. 同上, 再创建plt.subplot(236).

plt.subplot(235)
plt.plot([0,1],[0,3])
 
plt.subplot(236)
plt.plot([0,1],[0,4])
 
plt.show() # 展示

完整代码

plt.figure()
plt.subplot(2,1,1)
plt.plot([0,1],[0,1])
 
plt.subplot(2,3,4)
plt.plot([0,1],[0,2])
 
plt.subplot(235)
plt.plot([0,1],[0,3])
 
plt.subplot(236)
plt.plot([0,1],[0,4])
 
plt.show() # 展示

结果如下

以上这篇python实现在一个画布上画多个子图就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django的csrf实现过程详解

django的csrf实现过程详解

如果是ajax提交,可以按照下面的方式处理 <script src="/static/jq/jquery-3.3.1.js"></script> <s...

python opencv 直方图反向投影的方法

python opencv 直方图反向投影的方法

本文介绍了python opencv 直方图反向投影的方法,分享给大家,具体如下: 目标: 直方图反向投影 原理: 反向投影可以用来做图像分割,寻找感兴趣区间。它会输出与输入图像...

Python底层封装实现方法详解

这篇文章主要介绍了Python底层封装实现方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 事实上,python封装特性的实现纯...

Python实现KNN邻近算法

简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用...

浅谈对pytroch中torch.autograd.backward的思考

反向传递法则是深度学习中最为重要的一部分,torch中的backward可以对计算图中的梯度进行计算和累积 这里通过一段程序来演示基本的backward操作以及需要注意的地方 >...