tensorflow 固定部分参数训练,只训练部分参数的实例

yipeiwu_com6年前Python基础

在使用tensorflow来训练一个模型的时候,有时候需要依靠验证集来判断模型是否已经过拟合,是否需要停止训练。

1.首先想到的是用tf.placeholder()载入不同的数据来进行计算,比如

def inference(input_):
  """
  this is where you put your graph.
  the following is just an example.
  """
  
  conv1 = tf.layers.conv2d(input_)
 
  conv2 = tf.layers.conv2d(conv1)
 
  return conv2
 
 
input_ = tf.placeholder()
output = inference(input_)
...
calculate_loss_op = ...
train_op = ...
...
 
with tf.Session() as sess:
  sess.run([loss, train_op], feed_dict={input_: train_data})
 
  if validation == True:
    sess.run([loss], feed_dict={input_: validate_date})

这种方式很简单,也很直接了然。

2.但是,如果处理的数据量很大的时候,使用 tf.placeholder() 来载入数据会严重地拖慢训练的进度,因此,常用tfrecords文件来读取数据。

此时,很容易想到,将不同的值传入inference()函数中进行计算。

train_batch, label_batch = decode_train()
val_train_batch, val_label_batch = decode_validation()
 
 
train_result = inference(train_batch)
...
loss = ..
train_op = ...
...
 
if validation == True:
  val_result = inference(val_train_batch)
  val_loss = ..
  
 
with tf.Session() as sess:
  sess.run([loss, train_op])
 
  if validation == True:
    sess.run([val_result, val_loss])

这种方式看似能够直接调用inference()来对验证数据进行前向传播计算,但是,实则会在原图上添加上许多新的结点,这些结点的参数都是需要重新初始化的,也是就是说,验证的时候并不是使用训练的权重。

3.用一个tf.placeholder来控制是否训练、验证。

def inference(input_):
  ...
  ...
  ...
  
  return inference_result
 
 
train_batch, label_batch = decode_train()
val_batch, val_label = decode_validation()
 
is_training = tf.placeholder(tf.bool, shape=())
 
x = tf.cond(is_training, lambda: train_batch, lambda: val_batch)
y = tf.cond(is_training, lambda: train_label, lambda: val_label)
 
logits = inference(x)
loss = cal_loss(logits, y)
train_op = optimize(loss)
 
with tf.Session() as sess:
  
  loss, _ = sess.run([loss, train_op], feed_dict={is_training: True})
  
  if validation == True:
    loss = sess.run(loss, feed_dict={is_training: False})

使用这种方式就可以在一个大图里创建一个分支条件,从而通过控制placeholder来控制是否进行验证。

以上这篇tensorflow 固定部分参数训练,只训练部分参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3中函数参数的四种简单用法

下面给大家介绍python3中函数参数的四种简单用法,具体内容如下所示: def print_two(*args): arg1, arg2 = args print "arg...

基于Python __dict__与dir()的区别详解

Python下一切皆对象,每个对象都有多个属性(attribute),Python对属性有一套统一的管理方案。 __dict__与dir()的区别: dir()是一个函数,返回的是lis...

Python的条件锁与事件共享详解

1:事件机制共享队列: 利用消息机制在两个队列中,通过传递消息,实现可以控制的生产者消费者问题 要求:readthread读时,writethread不能写;writethread写...

利用Pycharm断点调试Python程序的方法

利用Pycharm断点调试Python程序的方法

1.代码 准备没有语法错误的Python程序: #!/usr/bin/python import numpy as np class Network: def __init__(...

python实现简单名片管理系统

前言 之前看过一遍的python教程,真的是自己看过一遍,python的程序能看懂,但是很难去实现。比较困难的自己实现一些代码,找工作原因,自己又认认真真的看书,敲代码,后来看到了这个...