python实现simhash算法实例

yipeiwu_com6年前Python基础

Simhash的算法简单的来说就是,从海量文本中快速搜索和已知simhash相差小于k位的simhash集合,这里每个文本都可以用一个simhash值来代表,一个simhash有64bit,相似的文本,64bit也相似,论文中k的经验值为3。该方法的缺点如优点一样明显,主要有两点,对于短文本,k值很敏感;另一个是由于算法是以空间换时间,系统内存吃不消。

复制代码 代码如下:

#!/usr/bin/python
# coding=utf-8
class simhash:

    #构造函数
    def __init__(self, tokens='', hashbits=128):       
        self.hashbits = hashbits
        self.hash = self.simhash(tokens);

    #toString函数   
    def __str__(self):
        return str(self.hash)

    #生成simhash值   
    def simhash(self, tokens):
        v = [0] * self.hashbits
        for t in [self._string_hash(x) for x in tokens]: #t为token的普通hash值          
            for i in range(self.hashbits):
                bitmask = 1 << i
                if t & bitmask :
                    v[i] += 1 #查看当前bit位是否为1,是的话将该位+1
                else:
                    v[i] -= 1 #否则的话,该位-1
        fingerprint = 0
        for i in range(self.hashbits):
            if v[i] >= 0:
                fingerprint += 1 << i
        return fingerprint #整个文档的fingerprint为最终各个位>=0的和

    #求海明距离
    def hamming_distance(self, other):
        x = (self.hash ^ other.hash) & ((1 << self.hashbits) - 1)
        tot = 0;
        while x :
            tot += 1
            x &= x - 1
        return tot

    #求相似度
    def similarity (self, other):
        a = float(self.hash)
        b = float(other.hash)
        if a > b : return b / a
        else: return a / b

    #针对source生成hash值   (一个可变长度版本的Python的内置散列)
    def _string_hash(self, source):       
        if source == "":
            return 0
        else:
            x = ord(source[0]) << 7
            m = 1000003
            mask = 2 ** self.hashbits - 1
            for c in source:
                x = ((x * m) ^ ord(c)) & mask
            x ^= len(source)
            if x == -1:
                x = -2
            return x
            

if __name__ == '__main__':
    s = 'This is a test string for testing'
    hash1 = simhash(s.split())

    s = 'This is a test string for testing also'
    hash2 = simhash(s.split())

    s = 'nai nai ge xiong cao'
    hash3 = simhash(s.split())

    print(hash1.hamming_distance(hash2) , "   " , hash1.similarity(hash2))
    print(hash1.hamming_distance(hash3) , "   " , hash1.similarity(hash3))


 

相关文章

Python3远程监控程序的实现方法

简述 一开始觉得这个很有趣,然后就想来做一个来玩一下 使用语言: Python3 使用工具:opencv视频监控 + socket数据传输技术 程序检验: 这里我考虑了一下,发现还是没有...

Python函数中参数是传递值还是引用详解

Python函数中参数是传递值还是引用详解

在 C/C++ 中,传值和传引用是函数参数传递的两种方式,在Python中参数是如何传递的?回答这个问题前,不如先来看两段代码。 代码段1: def foo(arg): arg =...

python random从集合中随机选择元素的方法

如下所示: list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] slice = random.sample(list, 5) #从list中随机获取5个元...

Python入门篇之面向对象

面向对象设计与面向对象编程的关系   面向对象设计(OOD)不会特别要求面向对象编程语言。事实上,OOD 可以由纯结构化语言来实现,比如 C,但如果想要构造具备对象性质和特点的...

Python求正态分布曲线下面积实例

Python求正态分布曲线下面积实例

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。这种分布的概率密度函数为: 其中,μ为均值,σ为标准差。 求正态分布曲线下面积有3σ原则: 正态曲线下,横轴区间(μ-σ,μ+...