爬山算法简介和Python实现实例

yipeiwu_com6年前Python基础

一、爬山法简介

爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。例如某个问题的解需要使用3个整数类型的参数x1、x2、x3,开始时将这三个参数设值为(2,2,-2),将x1增加/减少1,得到两个解(1,2,-2), (3, 2,-2);将x2增加/减少1,得到两个解(2,3, -2),(2,1, -2);将x3增加/减少1,得到两个解(2,2,-1),(2,2,-3),这样就得到了一个解集:
(2,2,-2), (1, 2,-2), (3, 2,-2), (2,3,-2), (2,1,-2), (2,2,-1), (2,2,-3)
从上面的解集中找到最优解,然后将这个最优解依据上面的方法再构造一个解集,再求最优解,就这样,直到前一次的最优解和后一次的最优解相同才结束“爬山”。

二、Python实例

设方程 y = x1+x2-x3,x1是区间[-2, 5]中的整数,x2是区间[2, 6]中的整数,x3是区间[-5, 2]中的整数。使用爬山法,找到使得y取值最小的解。

代码如下:

复制代码 代码如下:

import random

def evaluate(x1, x2, x3):
    return x1+x2-x3

if __name__ == '__main__':
    x_range = [ [-2, 5], [2, 6], [-5, 2] ]
    best_sol = [random.randint(x_range[0][0], x_range[0][1]),
           random.randint(x_range[1][0], x_range[1][1]),
           random.randint(x_range[2][0], x_range[2][1])]

    while True:
        best_evaluate = evaluate(best_sol[0], best_sol[1], best_sol[2])
        current_best_value = best_evaluate
        sols = [best_sol]

        for i in xrange(len(best_sol)):
            if best_sol[i] > x_range[i][0]:
                sols.append(best_sol[0:i] + [best_sol[i]-1] + best_sol[i+1:])
            if best_sol[i] < x_range[i][1]:
                sols.append(best_sol[0:i] + [best_sol[i]+1] + best_sol[i+1:])
        print sols
        for s in sols:
            el = evaluate(s[0], s[1], s[2])
            if el < best_evaluate:
                best_sol = s
                best_evaluate = el
        if best_evaluate == current_best_value:
            break

    print 'best sol:', current_best_value, best_sol
某次运行结果如下:

[[0, 5, 1], [-1, 5, 1], [1, 5, 1], [0, 4, 1], [0, 6, 1], [0, 5, 0], [0, 5, 2]]
[[-1, 5, 1], [-2, 5, 1], [0, 5, 1], [-1, 4, 1], [-1, 6, 1], [-1, 5, 0], [-1, 5, 2]]
[[-2, 5, 1], [-1, 5, 1], [-2, 4, 1], [-2, 6, 1], [-2, 5, 0], [-2, 5, 2]]
[[-2, 4, 1], [-1, 4, 1], [-2, 3, 1], [-2, 5, 1], [-2, 4, 0], [-2, 4, 2]]
[[-2, 3, 1], [-1, 3, 1], [-2, 2, 1], [-2, 4, 1], [-2, 3, 0], [-2, 3, 2]]
[[-2, 2, 1], [-1, 2, 1], [-2, 3, 1], [-2, 2, 0], [-2, 2, 2]]
[[-2, 2, 2], [-1, 2, 2], [-2, 3, 2], [-2, 2, 1]]
best sol: -2 [-2, 2, 2]


可以看到,最优解是-2,对应的x1、x2、x3分别取值-2、2、2。

三、如何找到全局最优

爬山法获取的最优解的可能是局部最优,如果要获得更好的解,多次使用爬山算法(需要从不同的初始解开始爬山),从多个局部最优解中找出最优解,而这个最优解也有可能是全局最优解。

另外,模拟退火算法也是一个试图找到全局最优解的算法。

 

相关文章

PyQt5每天必学之切换按钮

PyQt5每天必学之切换按钮

切换按钮是QPushButton的特殊模式。它是一个具有两种状态的按钮:按压和未按压。我们通过这两种状态之间的切换来修改其它内容。 #!/usr/bin/python3 # -*-...

利用Python读取文件的四种不同方法比对

前言 大家都知道Python 读文件的方式多种多样,但是当需要读取一个大文件的时候,不同的读取方式会有不一样的效果。下面就来看看详细的介绍吧。 场景 逐行读取一个 2.9G 的大文件...

Django为窗体加上防机器人的验证码功能过程解析

Django为窗体加上防机器人的验证码功能过程解析

这里我们使用 django-simple-captcha 模块,官方介绍如下:https://github.com/mbi/django-simple-captcha 一键安装: p...

Python动态赋值的陷阱知识点总结

忘了在哪看到一位编程大牛调侃,他说程序员每天就做两件事,其中之一就是处理字符串。相信不少同学会有同感。 几乎任何一种编程语言,都把字符串列为最基础和不可或缺的数据类型。而拼接字符串是必备...

利用Python绘制数据的瀑布图的教程

利用Python绘制数据的瀑布图的教程

介绍 对于绘制某些类型的数据来说,瀑布图是一种十分有用的工具。不足为奇的是,我们可以使用Pandas和matplotlib创建一个可重复的瀑布图。 在往下进行之前,我想先告诉大家我指代的...