python k-近邻算法实例分享

yipeiwu_com6年前Python基础

简单说明

这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了。

简称kNN。

已知:训练集,以及每个训练集的标签。

接下来:和训练集中的数据对比,计算最相似的k个距离。选择相似数据中最多的那个分类。作为新数据的分类。

python实例

复制代码 代码如下:

# -*- coding: cp936 -*-

#win系统中应用cp936编码,linux中最好还是utf-8比较好。
from numpy import *#引入科学计算包
import operator #经典python函数库。运算符模块。

#创建数据集
def createDataSet():
    group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels=['A','A','B','B']
    return group,labels

#算法核心
#inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classfy0(inX,dataSet,labels,k):
    #距离计算
    dataSetSize =dataSet.shape[0]#得到数组的行数。即知道有几个训练数据
    diffMat     =tile(inX,(dataSetSize,1))-dataSet#tile:numpy中的函数。tile将原来的一个数组,扩充成了4个一样的数组。diffMat得到了目标与训练数值之间的差值。
    sqDiffMat   =diffMat**2#各个元素分别平方
    sqDistances =sqDiffMat.sum(axis=1)#对应列相乘,即得到了每一个距离的平方
    distances   =sqDistances**0.5#开方,得到距离。
    sortedDistIndicies=distances.argsort()#升序排列
    #选择距离最小的k个点。
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    #排序
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

意外收获

把自己写的模块加入到python默认就有的搜索路径:在python/lib/-packages目录下建立一个 xxx.pth的文件,写入自己写的模块所在的路径即可

相关文章

python修改list中所有元素类型的三种方法

修改list中所有元素类型: 方法一: new = list() a = ['1', '2', '3'] for x in a: new.append(int(x)) print(...

Python使用matplotlib绘制三维图形示例

Python使用matplotlib绘制三维图形示例

本文实例讲述了Python使用matplotlib绘制三维图形。分享给大家供大家参考,具体如下: 用二维泡泡图表示三维数据 泡泡的坐标2维,泡泡的大小三维,使用到的函数 plt.sc...

python实现发送邮件功能

python实现发送邮件功能

本文实例为大家分享了python实现发送邮件功能的具体代码,供大家参考,具体内容如下 依赖: Python代码实现发送邮件,使用的模块是smtplib、MIMEText,实现代码之前需要...

python定时检查某个进程是否已经关闭的方法

本文实例讲述了python定时检查某个进程是否已经关闭的方法。分享给大家供大家参考。具体如下: import threading import time import os impo...

详解Python 正则表达式模块

详解Python 正则表达式模块

由于最近需要使用爬虫爬取数据进行测试,所以开始了爬虫的填坑之旅,那么首先就是先系统的学习下关于正则相关的知识啦。所以将下面正则方面的知识点做了个整理。语言环境为Python。主要讲解下P...