python k-近邻算法实例分享

yipeiwu_com6年前Python基础

简单说明

这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了。

简称kNN。

已知:训练集,以及每个训练集的标签。

接下来:和训练集中的数据对比,计算最相似的k个距离。选择相似数据中最多的那个分类。作为新数据的分类。

python实例

复制代码 代码如下:

# -*- coding: cp936 -*-

#win系统中应用cp936编码,linux中最好还是utf-8比较好。
from numpy import *#引入科学计算包
import operator #经典python函数库。运算符模块。

#创建数据集
def createDataSet():
    group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels=['A','A','B','B']
    return group,labels

#算法核心
#inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classfy0(inX,dataSet,labels,k):
    #距离计算
    dataSetSize =dataSet.shape[0]#得到数组的行数。即知道有几个训练数据
    diffMat     =tile(inX,(dataSetSize,1))-dataSet#tile:numpy中的函数。tile将原来的一个数组,扩充成了4个一样的数组。diffMat得到了目标与训练数值之间的差值。
    sqDiffMat   =diffMat**2#各个元素分别平方
    sqDistances =sqDiffMat.sum(axis=1)#对应列相乘,即得到了每一个距离的平方
    distances   =sqDistances**0.5#开方,得到距离。
    sortedDistIndicies=distances.argsort()#升序排列
    #选择距离最小的k个点。
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    #排序
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

意外收获

把自己写的模块加入到python默认就有的搜索路径:在python/lib/-packages目录下建立一个 xxx.pth的文件,写入自己写的模块所在的路径即可

相关文章

Python3.5集合及其常见运算实例详解

本文实例讲述了Python3.5集合及其常见运算。分享给大家供大家参考,具体如下: 1、集合的定义:集合是一个无序的、无重复的数据的数据组合。 2、集合的特征: (1)去除重复元素:将一...

使用python进行广告点击率的预测的实现

使用python进行广告点击率的预测的实现

当前在线广告服务中,广告的点击率(CTR)是评估广告效果的一个非常重要的指标。 因此,点击率预测系统是必不可少的,并广泛用于赞助搜索和实时出价。那么如何计算广告的点击率呢? 广告的点击率...

使用python切片实现二维数组复制示例

.csv数据格式 10*3,dataSet 1.1,1.5,2.5 1.3,1.9,3.2 1.5,2.3,3.9 1.7,2.7,4.6 1.9,3.1,5.3 2.1...

DataFrame 将某列数据转为数组的方法

如下所示: playerIds =salaries_2016['playerID'].tolist() data['列名'].tolist() 以上这篇DataFrame 将某列...

python2.7 安装pip的方法步骤(管用)

python2.7 安装pip的方法步骤(管用)

python2.7安装目录下没有Scripts文件夹。这种问题可能是你装的python安装包年代久远了,到官网下载最新的python2.7安装能解决这个问题。python2.7下载地址:...