python k-近邻算法实例分享

yipeiwu_com6年前Python基础

简单说明

这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了。

简称kNN。

已知:训练集,以及每个训练集的标签。

接下来:和训练集中的数据对比,计算最相似的k个距离。选择相似数据中最多的那个分类。作为新数据的分类。

python实例

复制代码 代码如下:

# -*- coding: cp936 -*-

#win系统中应用cp936编码,linux中最好还是utf-8比较好。
from numpy import *#引入科学计算包
import operator #经典python函数库。运算符模块。

#创建数据集
def createDataSet():
    group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels=['A','A','B','B']
    return group,labels

#算法核心
#inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classfy0(inX,dataSet,labels,k):
    #距离计算
    dataSetSize =dataSet.shape[0]#得到数组的行数。即知道有几个训练数据
    diffMat     =tile(inX,(dataSetSize,1))-dataSet#tile:numpy中的函数。tile将原来的一个数组,扩充成了4个一样的数组。diffMat得到了目标与训练数值之间的差值。
    sqDiffMat   =diffMat**2#各个元素分别平方
    sqDistances =sqDiffMat.sum(axis=1)#对应列相乘,即得到了每一个距离的平方
    distances   =sqDistances**0.5#开方,得到距离。
    sortedDistIndicies=distances.argsort()#升序排列
    #选择距离最小的k个点。
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    #排序
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

意外收获

把自己写的模块加入到python默认就有的搜索路径:在python/lib/-packages目录下建立一个 xxx.pth的文件,写入自己写的模块所在的路径即可

相关文章

python模拟实现斗地主发牌

题目:趣味百题之斗地主 扑克牌是一种非常大众化的游戏,在计算机中有很多与扑克牌有关的游戏。例如,在Windows操作系统下自带的纸牌、红心大战等。在扑克牌类的游戏中,往往都需要执行洗牌操...

Python实现SQL注入检测插件实例代码

Python实现SQL注入检测插件实例代码

扫描器需要实现的功能思维导图 爬虫编写思路 首先需要开发一个爬虫用于收集网站的链接,爬虫需要记录已经爬取的链接和待爬取的链接,并且去重,用 Python 的set()就可以解决,大概...

wxPython窗体拆分布局基础组件

wxPython窗体拆分布局基础组件

本文实例为大家分享了wxPython窗体拆分布局的具体代码,供大家参考,具体内容如下 BoxSizer 布局管理 参数说明: orient:wx.VERTICAL(垂直方向) 或 wx....

详解Python3 pickle模块用法

pickle(python3.x)和cPickle(python2.x的模块)相当于java的序列化和反序列化操作。 常采用下面的方式使用: import pickle pickle...

numpy返回array中元素的index方法

如下所示: import numpy a = numpy.array(([3,2,1],[2,5,7],[4,7,8])) itemindex = numpy.argwhere(a...