python k-近邻算法实例分享

yipeiwu_com6年前Python基础

简单说明

这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了。

简称kNN。

已知:训练集,以及每个训练集的标签。

接下来:和训练集中的数据对比,计算最相似的k个距离。选择相似数据中最多的那个分类。作为新数据的分类。

python实例

复制代码 代码如下:

# -*- coding: cp936 -*-

#win系统中应用cp936编码,linux中最好还是utf-8比较好。
from numpy import *#引入科学计算包
import operator #经典python函数库。运算符模块。

#创建数据集
def createDataSet():
    group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels=['A','A','B','B']
    return group,labels

#算法核心
#inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classfy0(inX,dataSet,labels,k):
    #距离计算
    dataSetSize =dataSet.shape[0]#得到数组的行数。即知道有几个训练数据
    diffMat     =tile(inX,(dataSetSize,1))-dataSet#tile:numpy中的函数。tile将原来的一个数组,扩充成了4个一样的数组。diffMat得到了目标与训练数值之间的差值。
    sqDiffMat   =diffMat**2#各个元素分别平方
    sqDistances =sqDiffMat.sum(axis=1)#对应列相乘,即得到了每一个距离的平方
    distances   =sqDistances**0.5#开方,得到距离。
    sortedDistIndicies=distances.argsort()#升序排列
    #选择距离最小的k个点。
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    #排序
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

意外收获

把自己写的模块加入到python默认就有的搜索路径:在python/lib/-packages目录下建立一个 xxx.pth的文件,写入自己写的模块所在的路径即可

相关文章

Python图像处理之图像的缩放、旋转与翻转实现方法示例

Python图像处理之图像的缩放、旋转与翻转实现方法示例

本文实例讲述了Python图像处理之图像的缩放、旋转与翻转实现方法。分享给大家供大家参考,具体如下: 图像的几何变换,如缩放、旋转和翻转等,在图像处理中扮演着重要的角色,python中的...

python实现计算倒数的方法

本文实例讲述了python实现计算倒数的方法。分享给大家供大家参考。具体如下: class Expr: def __add__(self, other): return P...

python多线程用法实例详解

本文实例分析了python多线程用法。分享给大家供大家参考。具体如下: 今天在学习尝试学习python多线程的时候,突然发现自己一直对super的用法不是很清楚,所以先总结一些遇到的问题...

python使用Berkeley DB数据库实例

本文实例讲述了python使用Berkeley DB数据库的方法,分享给大家供大家参考。 具体实现方法如下: try: from bsddb import db except...

Python中的魔法方法深入理解

接触Python也有一段时间了,Python相关的框架和模块也接触了不少,希望把自己接触到的自己 觉得比较好的设计和实现分享给大家,于是取了一个“Charming Python”的小标,...