python k-近邻算法实例分享

yipeiwu_com6年前Python基础

简单说明

这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了。

简称kNN。

已知:训练集,以及每个训练集的标签。

接下来:和训练集中的数据对比,计算最相似的k个距离。选择相似数据中最多的那个分类。作为新数据的分类。

python实例

复制代码 代码如下:

# -*- coding: cp936 -*-

#win系统中应用cp936编码,linux中最好还是utf-8比较好。
from numpy import *#引入科学计算包
import operator #经典python函数库。运算符模块。

#创建数据集
def createDataSet():
    group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels=['A','A','B','B']
    return group,labels

#算法核心
#inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classfy0(inX,dataSet,labels,k):
    #距离计算
    dataSetSize =dataSet.shape[0]#得到数组的行数。即知道有几个训练数据
    diffMat     =tile(inX,(dataSetSize,1))-dataSet#tile:numpy中的函数。tile将原来的一个数组,扩充成了4个一样的数组。diffMat得到了目标与训练数值之间的差值。
    sqDiffMat   =diffMat**2#各个元素分别平方
    sqDistances =sqDiffMat.sum(axis=1)#对应列相乘,即得到了每一个距离的平方
    distances   =sqDistances**0.5#开方,得到距离。
    sortedDistIndicies=distances.argsort()#升序排列
    #选择距离最小的k个点。
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    #排序
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

意外收获

把自己写的模块加入到python默认就有的搜索路径:在python/lib/-packages目录下建立一个 xxx.pth的文件,写入自己写的模块所在的路径即可

相关文章

python实现切割url得到域名、协议、主机名等各个字段的例子

有一个需求就是需要对url进行进一步的划分得到详细的各个字段信息,下面是简单的实现: #!/usr/bin/python # -*- coding: UTF-8 -*- ''' __...

Python判断Abundant Number的方法

本文实例讲述了Python判断Abundant Number的方法。分享给大家供大家参考。具体如下: Abundant Number,中文译成:盈数(又称 丰数, 过剩数abundant...

Python与Redis的连接教程

今天在写zabbix storm job监控脚本的时候用到了python的redis模块,之前也有用过,但是没有过多的了解,今天看了下相关的api和源码,看到有ConnectionPoo...

详解Python如何获取列表(List)的中位数

详解Python如何获取列表(List)的中位数

前言 中位数是一个可将数值集合划分为相等的上下两部分的一个数值。如果列表数据的个数是奇数,则列表中间那个数据就是列表数据的中位数;如果列表数据的个数是偶数,则列表中间那2个数据的算术平均...

Python中在for循环中嵌套使用if和else语句的技巧

for...[if]...构建List (List comprehension) 1.简单的for...[if]...语句 Python中,for...[if]...语句一种简洁的构建L...