Python实现的一个简单LRU cache

yipeiwu_com5年前Python基础

起因:我的同事需要一个固定大小的cache,如果记录在cache中,直接从cache中读取,否则从数据库中读取。python的dict 是一个非常简单的cache,但是由于数据量很大,内存很可能增长的过大,因此需要限定记录数,并用LRU算法丢弃旧记录。key 是整型,value是10KB左右的python对象

分析:

1)可以想到,在对于cache,我们需要维护 key -> value 的关系

2)而为了实现LRU,我们又需要一个基于时间的优先级队列,来维护   timestamp  -> (key, value) 的关系

3)当cache 中的记录数达到一个上界maxsize时,需要将timestamp 最小的(key,value) 出队列

4) 当一个(key, value) 被命中时,实际上我们需要将它从队列中,移除并插入到队列的尾部。

从分析可以看出我们的cache 要达到性能最优需要满足上面的四项功能,对于队表的快速移除和插入,链表显然是最优的选择,为了快速移除,最好使用双向链表,为了插入尾部,需要有指向尾部的指针。

下面用python 来实现:

复制代码 代码如下:

#encoding=utf-8

class LRUCache(object):
    def __init__(self, maxsize):
        # cache 的最大记录数
        self.maxsize = maxsize
        # 用于真实的存储数据
        self.inner_dd = {}
        # 链表-头指针
        self.head = None
        # 链表-尾指针
        self.tail = None

    def set(self, key, value):
        # 达到指定大小     
        if len(self.inner_dd) >= self.maxsize:
            self.remove_head_node()

        node = Node()
        node.data = (key, value)
        self.insert_to_tail(node)
        self.inner_dd[key] = node

    def insert_to_tail(self, node):
        if self.tail is None:
            self.tail = node
            self.head = node
        else:
            self.tail.next = node
            node.pre = self.tail
            self.tail = node

    def remove_head_node(self):
        node = self.head
        del self.inner_dd[node.data[0]]
        node = None
        self.head = self.head.next
        self.head.pre = None
    def get(self, key):
        if key in self.inner_dd:
            # 如果命中, 需要将对应的节点移动到队列的尾部
            node = self.inner_dd.get(key)
            self.move_to_tail(node)
            return node.data[1]
        return None

    def move_to_tail(self, node):
        # 只需处理在队列头部和中间的情况
        if not (node == self.tail):
            if node == self.head:
                self.head = node.next
                self.head.pre = None
                self.tail.next = node
                node.pre = self.tail
                node.next = None
                self.tail = node
            else:
                pre_node = node.pre
                next_node = node.next
                pre_node.next = next_node
                next_node.pre = pre_node

                self.tail.next = node
                node.pre = self.tail
                node.next = None
                self.tail = node

class Node(object):
    def __init__(self):
        self.pre = None
        self.next = None
        # (key, value)
        self.data = None

    def __eq__(self, other):
        if self.data[0] == other.data[0]:
            return True
        return False
    def __str__(self):
       return str(self.data)

if __name__ == '__main__':
    cache = LRUCache(10)
    for i in xrange(1000):
        cache.set(i, i+1)
        cache.get(2)
    for key in cache.inner_dd:
        print key, cache.inner_dd[key]

相关文章

scikit-learn线性回归,多元回归,多项式回归的实现

scikit-learn线性回归,多元回归,多项式回归的实现

匹萨的直径与价格的数据 %matplotlib inline import matplotlib.pyplot as plt def runplt(): plt.figure()...

Python中的列表知识点汇总

Python list 在介绍 Python tuple 时,我使用了类比的方法,将其比做一个袋子,您可以在袋子中存放不同的东西。Python list 与此非常类似,因此,它的功能与袋...

浅谈Python实现贪心算法与活动安排问题

浅谈Python实现贪心算法与活动安排问题

贪心算法 原理:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对...

使用Python设计一个代码统计工具

问题 设计一个程序,用于统计一个项目中的代码行数,包括文件个数,代码行数,注释行数,空行行数。尽量设计灵活一点可以通过输入不同参数来统计不同语言的项目,例如: # type用于指定文...

举例讲解Python设计模式编程中对抽象工厂模式的运用

举例讲解Python设计模式编程中对抽象工厂模式的运用

抽象工厂模式:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 优点:易于交换“产品系列”,只要更改相应的工厂即可。 缺点:建立产品的时候很繁琐,需要增加和修改很多东...