python多进程操作实例

yipeiwu_com5年前Python基础

由于CPython实现中的GIL的限制,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况我们需要使用多进程。 这也许就是python中多进程类库如此简洁好用的原因所在。在python中可以向多线程一样简单地使用多进程。

一、多进程

process的成员变量和方法:

>>class multiprocessing.Process([group[, target[, name[, args[, kwargs]]]]]) 来的定义类似于threading.Thread。target表示此进程运行的函数,args和kwargs表示target的参数。

>>name, pid

分别表示进程的名字,进程id。

>> daemon成员

daemon标志位bool变量,需要在start()调用前设置。daemon的初始值是从父进程继承而来。当一个进程结束的时候,它尝试去结束它的所有的daemon子进程。

注意:

daemon进程不允许创建子进程。否则当daemon进程结束的时候它的子进程不能被结束。

这里的daemon不是Unix的daemon进程,当父进程结束的时候所有的daemon子进程也将被终止(对于非daemon进程,父进程不等待非daemon的紫子进程,除非显示地对非daemon子进程使用join()方法)。

>>  exitcode

如果进程还没有退出,则为None,如果正确的退出则为0,如果有错误则为>0的错误代码,如果进程为终止则为-1*singal。 

>> start(), is_live(), terminate()

start()用来启动进程,is_live()用来查看进程的状态,terminate()用来终止进程。

>> run()

可以在process的子类中重载run()方法,从而设定进程的任务。重载process是构造新进程的另一种方式,一定程度上上等价于process的target参数。

multiprcessing的静态方法:

>>  multiprocessing.cpu_count()

用来获得当前的CPU的核数,可以用来设置接下来子进程的个数。

>>  multiprocessing.active_children()

用来获得当前所有的子进程,包括daemon和非daemon子进程。

实例:

复制代码 代码如下:

import multiprocessing
import time
import sys

def worker(num):
    p = multiprocessing.current_process()
    print ('Starting:' + p.name + ":" + str(p.pid))
    print(str(num))
    sys.stdout.flush()
    print ('Exiting :' + p.name + ":" + str(p.pid))
    sys.stdout.flush()

def daemon():
    p = multiprocessing.current_process()
    print ('Starting:' + p.name + ":" + str(p.pid))
    sys.stdout.flush()
    time.sleep(10)
    print ('Exiting :' + p.name + ":" + str(p.pid))
    sys.stdout.flush()
   
def non_daemon():
    p = multiprocessing.current_process()
    print ('Starting:' + p.name + ":" + str(p.pid))
    sys.stdout.flush()
    time.sleep(20)
    print ('Exiting :' + p.name + ":" + str(p.pid))
    sys.stdout.flush()
   
if __name__ == '__main__':
    w = multiprocessing.Process(name='worker', target=worker, args=(100,))
    d = multiprocessing.Process(name='daemon', target=daemon)
    d.daemon = True
    nd = multiprocessing.Process(name='non-daemon', target=non_daemon)
    w.start()
    d.start()
    nd.start()
   
    print("the number of CPU is " + str(multiprocessing.cpu_count()))
    print("All children processes:")
    for p in multiprocessing.active_children():
        print("child:" + p.name + ":" + str(p.pid))
    print()
   
    w.join()
    #d.join()

运行结果:

可以从上面的例子看到没有多非daemon子进程使用join()方法,结果父进程没有等待非daemon进程结束就退出了。

相关文章

Numpy之random函数使用学习

random模块用于生成随机数,下面看看模块中一些常用函数的用法: numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点...

远程部署工具Fabric详解(支持Python3)

前言 如果你搜一圈 "Fabric "关键字,你会发现 90% 的资料都是过时的,因为现在 Fabric 支持 Python3,但是它又不兼容旧版 Fabric。所以,如果你按照那些教程...

python实现感知器

python实现感知器

上篇博客转载了关于感知器的用法,遂这篇做个大概总结,并实现一个简单的感知器,也为了加深自己的理解。 感知器是最简单的神经网络,只有一层。感知器是模拟生物神经元行为的机器。感知器的模型如下...

Python3使用PySynth制作音乐的方法

Python3使用PySynth制作音乐的方法

本人虽然五音不全,但是听歌还是很喜欢的。希望能利用机器自动制作音乐,本我发现了一个比较适合入门的有趣的开源音乐生成模块 PySynth ,文我们主要讲解下如何Python3使用PySyn...

15行Python代码带你轻松理解令牌桶算法

15行Python代码带你轻松理解令牌桶算法

在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法就实现了这个功能, 可控制发送到网络上数据的数目,并允许突发数据的发送。 什么是令牌...