Python多线程同步Lock、RLock、Semaphore、Event实例

yipeiwu_com5年前Python基础

一、多线程同步

由于CPython的python解释器在单线程模式下执行,所以导致python的多线程在很多的时候并不能很好地发挥多核cpu的资源。大部分情况都推荐使用多进程。

python的多线程的同步与其他语言基本相同,主要包含:

Lock & RLock :用来确保多线程多共享资源的访问。
Semaphore : 用来确保一定资源多线程访问时的上限,例如资源池。 
Event : 是最简单的线程间通信的方式,一个线程可以发送信号,其他的线程接收到信号后执行操作。 

二、实例

1)Lock & RLock

Lock对象的状态可以为locked和unlocked

使用acquire()设置为locked状态;
使用release()设置为unlocked状态。

如果当前的状态为unlocked,则acquire()会将状态改为locked然后立即返回。当状态为locked的时候,acquire()将被阻塞直到另一个线程中调用release()来将状态改为unlocked,然后acquire()才可以再次将状态置为locked。

Lock.acquire(blocking=True, timeout=-1),blocking参数表示是否阻塞当前线程等待,timeout表示阻塞时的等待时间 。如果成功地获得lock,则acquire()函数返回True,否则返回False,timeout超时时如果还没有获得lock仍然返回False。

实例:(确保只有一个线程可以访问共享资源)

复制代码 代码如下:

import threading
import time
 
num = 0
lock = threading.Lock()
 
def func(st):
    global num
    print (threading.currentThread().getName() + ' try to acquire the lock')
    if lock.acquire():
        print (threading.currentThread().getName() + ' acquire the lock.' )
        print (threading.currentThread().getName() +" :%s" % str(num) )
        num += 1
        time.sleep(st)
        print (threading.currentThread().getName() + ' release the lock.'  )       
        lock.release()
 
t1 = threading.Thread(target=func, args=(8,))
t2 = threading.Thread(target=func, args=(4,))
t3 = threading.Thread(target=func, args=(2,))
t1.start()
t2.start()
t3.start()

结果:

RLock与Lock的区别是:RLock中除了状态locked和unlocked外还记录了当前lock的owner和递归层数,使得RLock可以被同一个线程多次acquire()。

2)Semaphore

Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

实例:(同时只有2个线程可以获得semaphore,即可以限制最大连接数为2):

复制代码 代码如下:

import threading
import time

semaphore = threading.Semaphore(2)
 
def func():
    if semaphore.acquire():
        for i in range(5):
          print (threading.currentThread().getName() + ' get semaphore')
        semaphore.release()
        print (threading.currentThread().getName() + ' release semaphore')
       
       
for i in range(4):
  t1 = threading.Thread(target=func)
  t1.start()

结果:

3) Event

Event内部包含了一个标志位,初始的时候为false。
可以使用使用set()来将其设置为true;
或者使用clear()将其从新设置为false;
可以使用is_set()来检查标志位的状态;
另一个最重要的函数就是wait(timeout=None),用来阻塞当前线程,直到event的内部标志位被设置为true或者timeout超时。如果内部标志位为true则wait()函数理解返回。

实例: (线程间相互通信)

复制代码 代码如下:

import logging
import threading
import time

logging.basicConfig(level=logging.DEBUG,
format="(%(threadName)-10s : %(message)s",
)

def wait_for_event_timeout(e, t):
    """Wait t seconds and then timeout"""
    while not e.isSet():
      logging.debug("wait_for_event_timeout starting")
      event_is_set = e.wait(t)
      logging.debug("event set: %s" % event_is_set)
    if event_is_set:
      logging.debug("processing event")
    else:
      logging.debug("doing other work")
     
e = threading.Event()
t2 = threading.Thread(name="nonblock",
target=wait_for_event_timeout,args=(e, 2))
t2.start()
logging.debug("Waiting before calling Event.set()")
time.sleep(7)
e.set()
logging.debug("Event is set")

运行结果:

三、其他

1) 线程局部变量

线程局部变量的值是跟线程相关的,区别与全局的变量。使用非常简单如下:

复制代码 代码如下:

mydata = threading.local()
mydata.x = 1

2)对Lock,semaphore,condition等使用with关键字代替手动调用acquire()和release()。

相关文章

Python编写检测数据库SA用户的方法

本文讲述一个用Python写的小程序,用于有注入点的链接,以检测当前数据库用户是否为sa,详细代码如下: # Code by zhaoxiaobu Email: little.bu@...

解决pycharm py文件运行后停止按钮变成了灰色的问题

解决pycharm py文件运行后停止按钮变成了灰色的问题

这两天被这个问题折磨得要死,把pycharm卸载了还是没解决,后来终于在一篇博客中看见,然后终于解决了 问题界面如下: 1. 每次运行后都会跳出一个 python console,并且...

Python实现输出某区间范围内全部素数的方法

Python实现输出某区间范围内全部素数的方法

本文实例讲述了Python实现输出某区间范围内全部素数的方法。分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- # 简述:区间范围101-200 #...

pytorch的梯度计算以及backward方法详解

pytorch的梯度计算以及backward方法详解

基础知识 tensors: tensor在pytorch里面是一个n维数组。我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度。在pytorc...

Python脚本获取操作系统版本信息

Python脚本获取操作系统版本信息

查看系统版本信息是一件家常便饭的事情,有时候需要将版本信息录入到资产管理系统中,如果每次手动的去查询这些信息再录入系统那么是一件令人呢头疼的事情,如果采用脚本去完成这件事情,那么情况就有...