理解Python中的With语句

yipeiwu_com6年前Python基础

With语句是什么?

有一些任务,可能事先需要设置,事后做清理工作。对于这种场景,Python的with语句提供了一种非常方便的处理方式。一个很好的例子是文件处理,你需要获取一个文件句柄,从文件中读取数据,然后关闭文件句柄。

如果不用with语句,代码如下:

复制代码 代码如下:

file = open("/tmp/foo.txt")
data = file.read()
file.close()

这里有两个问题。一是可能忘记关闭文件句柄;二是文件读取数据发生异常,没有进行任何处理。下面是处理异常的加强版本:

复制代码 代码如下:

file = open("/tmp/foo.txt")
try:
    data = file.read()
finally:
    file.close()

虽然这段代码运行良好,但是太冗长了。这时候就是with一展身手的时候了。除了有更优雅的语法,with还可以很好的处理上下文环境产生的异常。下面是with版本的代码:

复制代码 代码如下:

with open("/tmp /foo.txt") as file:
    data = file.read()

with如何工作?

这看起来充满魔法,但不仅仅是魔法,Python对with的处理还很聪明。基本思想是with所求值的对象必须有一个__enter__()方法,一个__exit__()方法。

紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量。当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法。

下面例子可以具体说明with如何工作:

复制代码 代码如下:

#!/usr/bin/env python
# with_example01.py

class Sample:
    def __enter__(self):
        print "In __enter__()"
        return "Foo"

    def __exit__(self, type, value, trace):
        print "In __exit__()"


def get_sample():
    return Sample()


with get_sample() as sample:
    print "sample:", sample

行代码,输出如下

复制代码 代码如下:

bash-3.2$ ./with_example01.py
In __enter__()
sample: Foo
In __exit__()

正如你看到的,

__enter__()方法被执行

__enter__()方法返回的值 - 这个例子中是"Foo",赋值给变量'sample'
执行代码块,打印变量"sample"的值为 "Foo"

__exit__()方法被调用

with真正强大之处是它可以处理异常。可能你已经注意到Sample类的__exit__方法有三个参数- val, type 和 trace。 这些参数在异常处理中相当有用。我们来改一下代码,看看具体如何工作的。

复制代码 代码如下:

#!/usr/bin/env python
# with_example02.py


class Sample:
    def __enter__(self):
        return self

    def __exit__(self, type, value, trace):
        print "type:", type
        print "value:", value
        print "trace:", trace

    def do_something(self):
        bar = 1/0
        return bar + 10

with Sample() as sample:
    sample.do_something()

这个例子中,with后面的get_sample()变成了Sample()。这没有任何关系,只要紧跟with后面的语句所返回的对象有 __enter__()和__exit__()方法即可。此例中,Sample()的__enter__()方法返回新创建的Sample对象,并赋值给变量sample。

代码执行后:

复制代码 代码如下:

bash-3.2$ ./with_example02.py
type: <type 'exceptions.ZeroDivisionError'>
value: integer division or modulo by zero
trace: <traceback object at 0x1004a8128>
Traceback (most recent call last):
  File "./with_example02.py", line 19, in <module>
    sample.do_somet hing()
  File "./with_example02.py", line 15, in do_something
    bar = 1/0
ZeroDivisionError: integer division or modulo by zero

实际上,在with后面的代码块抛出任何异常时,__exit__()方法被执行。正如例子所示,异常抛出时,与之关联的type,value和stack trace传给__exit__()方法,因此抛出的ZeroDivisionError异常被打印出来了。开发库时,清理资源,关闭文件等等操作,都可以放在__exit__方法当中。

因此,Python的with语句是提供一个有效的机制,让代码更简练,同时在异常产生时,清理工作更简单。

示例代码可以在Github上面找到。

相关文章

用TensorFlow实现戴明回归算法的示例

用TensorFlow实现戴明回归算法的示例

如果最小二乘线性回归算法最小化到回归直线的竖直距离(即,平行于y轴方向),则戴明回归最小化到回归直线的总距离(即,垂直于回归直线)。其最小化x值和y值两个方向的误差,具体的对比图如下图。...

下载与当前Chrome对应的chromedriver.exe(用于python+selenium)

下载与当前Chrome对应的chromedriver.exe(用于python+selenium)

一、 打开Chrome浏览器,输chrome://version/ 二、下载chromedriver.exe驱动 注意:上图可以看到安装的Chrome浏览器版本为79.0.3945.8...

pandas DataFrame 行列索引及值的获取的方法

pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'...

解决Pytorch 训练与测试时爆显存(out of memory)的问题

Pytorch 训练时有时候会因为加载的东西过多而爆显存,有些时候这种情况还可以使用cuda的清理技术进行修整,当然如果模型实在太大,那也没办法。 使用torch.cuda.empty_...

基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

​ 1.滑动平均概念 滑动平均滤波法(又称递推平均滤波法),时把连续取N个采样值看成一个队列 ,队列的长度固定为N ,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据....