python通过BF算法实现关键词匹配的方法

yipeiwu_com6年前Python基础

本文实例讲述了python通过BF算法实现关键词匹配的方法。分享给大家供大家参考。具体实现方法如下:

复制代码 代码如下:
#!/usr/bin/python
# -*- coding: UTF-8
# filename BF
import time
"""
t="this is a big apple,this is a big apple,this is a big apple,this is a big apple."
p="apple"
"""
t="为什么叫向量空间模型呢?其实我们可以把每个词给看成一个维度,而词的频率看成其值(有向),即向量,这样每篇文章的词及其频率就构成了一个i维空间图,两个文档的相似度就是两个空间图的接近度。假设文章只有两维的话,那么空间图就可以画在一个平面直角坐标系当中,读者可以假想两篇只有两个词的文章画图进行理解。"
p="读者"
i=0
count=0
start=time.time()
while (i <=len(t)-len(p)):
    j=0
    while (t[i]==p[j]):
                i=i+1
                j=j+1
        if j==len(p):
            break        
        elif (j==len(p)-1):
            count=count+1
    else:
        i=i+1
        j=0
print count
print time.time()-start

 
算法思想:目标串t与模式串p逐词比较,若对应位匹配,则进行下一位比较;若不相同,p右移1位,从p的第1位重新开始比较。

算法特点:整体移动方向:可认为在固定的情况下,p从左向右滑动;匹配比较时,从p的最左边位开始向右逐位与t串中对应位比较。p的滑动距离为1,这导致BF算法匹配效率低(相比其他算法,如:BM,KMP,滑动没有跳跃)。

该算法的时间复杂度为O(len(t)*len(p)),空间复杂度为O(len(t)+len(p))

希望本文所述对大家的Python程序设计有所帮助。

相关文章

详解Python文件修改的两种方式

文件的数据是存放于硬盘上的,因而只存在覆盖、不存在修改这么一说,我们平时看到的修改文件,都是模拟出来的效果,具体的说有两种实现方式。 一、方式一 将硬盘存放的该文件的内容全部加载到内存...

python使用pandas处理大数据节省内存技巧(推荐)

python使用pandas处理大数据节省内存技巧(推荐)

一般来说,用pandas处理小于100兆的数据,性能不是问题。当用pandas来处理100兆至几个G的数据时,将会比较耗时,同时会导致程序因内存不足而运行失败。 当然,像Spark这类的...

python多线程抽象编程模型详解

最近需要完成一个多线程下载的工具,对其中的多线程下载进行了一个抽象,可以对所有需要使用到多线程编程的地方统一使用这个模型来进行编写。 主要结构: 1、基于Queue标准库实现了一个类似线...

Python 绘图库 Matplotlib 入门教程

Python 绘图库 Matplotlib 入门教程

运行环境 由于这是一个Python语言的软件包,因此需要你的机器上首先安装好Python语言的环境。关于这一点,请自行在网络上搜索获取方法。 关于如何安装Matplotlib请参见这里:...

对pandas数据判断是否为NaN值的方法详解

实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分。 具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割。...