Python中的defaultdict模块和namedtuple模块的简单入门指南

yipeiwu_com5年前Python基础

在Python中有一些内置的数据类型,比如int, str, list, tuple, dict等。Python的collections模块在这些内置数据类型的基础上,提供了几个额外的数据类型:namedtuple, defaultdict, deque, Counter, OrderedDict等,其中defaultdict和namedtuple是两个很实用的扩展类型。defaultdict继承自dict,namedtuple继承自tuple。
一、defaultdict

 1. 简介

在使用Python原生的数据结构dict的时候,如果用d[key]这样的方式访问,当指定的key不存在时,是会抛出KeyError异常的。但是,如果使用defaultdict,只要你传入一个默认的工厂方法,那么请求一个不存在的key时, 便会调用这个工厂方法使用其结果来作为这个key的默认值。

defaultdict在使用的时候需要传一个工厂函数(function_factory),defaultdict(function_factory)会构建一个类似dict的对象,该对象具有默认值,默认值通过调用工厂函数生成。

2. 示例

下面给一个defaultdict的使用示例:
 

In [1]: from collections import defaultdict
 
In [2]: s = [('xiaoming', 99), ('wu', 69), ('zhangsan', 80), ('lisi', 96), ('wu', 100), ('yuan', 98), ('xiaoming', 89)]
 
In [3]: d = defaultdict(list)
 
In [4]: for k, v in s:
  ...:   d[k].append(v)
  ...:  
 
In [5]: d
Out[5]: defaultdict(<type 'list'>, {'lisi': [96], 'xiaoming': [99, 89], 'yuan': [98], 'zhangsan': [80], 'wu': [69, 100]})
 
In [6]: for k, v in d.items():
  ...:   print '%s: %s' % (k, v)
  ...:  
lisi: [96]
xiaoming: [99, 89]
yuan: [98]
zhangsan: [80]
wu: [69, 100]

对Python比较熟悉的同学可以发现defaultdict(list)的用法和dict.setdefault(key, [])比较类似,上述代码使用setdefault实现如下:
 

s = [('xiaoming', 99), ('wu', 69), ('zhangsan', 80), ('lisi', 96), ('wu', 100), ('yuan', 98), ('xiaoming', 89)]
d = {}
 
for k, v in s:
  d.setdefault(k, []).append(v)

3. 原理

从以上的例子中,我们可以基本了defaultdict的用法,下面我们可以通过help(defaultdict)了解一下defaultdict的原理。通过Python console打印出的help信息来看,我们可以发现defaultdict具有默认值主要是通过__missing__方法实现的,如果工厂函数不为None,则通过工厂方法返回默认值,具体如下:
 

def __missing__(self, key):
  # Called by __getitem__ for missing key
  if self.default_factory is None:
    raise KeyError((key,))
  self[key] = value = self.default_factory()
  return value

从上面的说明中,我们可以发现一下几个需要注意的地方:

a). __missing__方法是在调用__getitem__方法发现KEY不存在时才调用的,所以,defaultdict也只会在使用d[key]或者d.__getitem__(key)的时候才会生成默认值;如果使用d.get(key)是不会返回默认值的,会出现KeyError;

b). defaultdict主要是通过__missing__方法实现,所以,我们也可以通过实现该方法来生成自己的defaultdict,代码入下:

In [1]: class MyDefaultDict(dict):
  ...:   def __missing__(self, key):
  ...:     self[key] = 'default'
  ...:     return 'default'
  ...:  
 
In [2]: my_default_dict = MyDefaultDict()
 
In [3]: my_default_dict
Out[3]: {}
 
In [4]: print my_default_dict['test']
default
 
In [5]: my_default_dict
Out[5]: {'test': 'default'}

4. 版本

defaultdict是在Python 2.5之后才加入的功能,在旧版本的Python中是不支持这个功能的,不过,知道了它的原理,我们可以自己实现一个defaultdict。

# http://code.activestate.com/recipes/523034/
try:
  from collections import defaultdict
except:
  class defaultdict(dict):
 
    def __init__(self, default_factory=None, *a, **kw):
      if (default_factory is not None and
        not hasattr(default_factory, '__call__')):
        raise TypeError('first argument must be callable')
      dict.__init__(self, *a, **kw)
      self.default_factory = default_factory
 
    def __getitem__(self, key):
      try:
        return dict.__getitem__(self, key)
      except KeyError:
        return self.__missing__(key)
 
    def __missing__(self, key):
      if self.default_factory is None:
        raise KeyError(key)
      self[key] = value = self.default_factory()
      return value
 
    def __reduce__(self):
      if self.default_factory is None:
        args = tuple()
      else:
        args = self.default_factory,
      return type(self), args, None, None, self.items()
 
    def copy(self):
      return self.__copy__()
 
    def __copy__(self):
      return type(self)(self.default_factory, self)
 
    def __deepcopy__(self, memo):
      import copy
      return type(self)(self.default_factory, copy.deepcopy(self.items()))
 
    def __repr__(self):
      return 'defaultdict(%s, %s)' % (self.default_factory, dict.__repr__(self))

二、namedtuple

namedtuple主要用来产生可以使用名称来访问元素的数据对象,通常用来增强代码的可读性,在访问一些tuple类型的数据时尤其好用。其实,在大部分时候你应该使用namedtuple替代tuple,这样可以让你的代码更容易读懂,更加pythonic。举个例子:

from collections import namedtuple
 
# 变量名和namedtuple中的第一个参数一般保持一致,但也可以不一样
Student = namedtuple('Student', 'id name score')
# 或者 Student = namedtuple('Student', ['id', 'name', 'score'])
 
students = [(1, 'Wu', 90), (2, 'Xing', 89), (3, 'Yuan', 98), (4, 'Wang', 95)]
 
for s in students:
  stu = Student._make(s)
  print stu
 
# Output:
# Student(id=1, name='Wu', score=90)
# Student(id=2, name='Xing', score=89)
# Student(id=3, name='Yuan', score=98)
# Student(id=4, name='Wang', score=95)

在上面的例子中,Student就是一个namedtuple,它和tuple的使用方法一样,可以通过index直接取,而且是只读的。这种方式比tuple容易理解多了,可以很清楚的知道每个值代表的含义。

相关文章

不可错过的十本Python好书

不可错过的十本Python好书

以往的文章中小编已经给大家陆续推荐了很多的Python书籍,可以说品种齐全、本本经典了,不知道你是不是已经眼花缭乱,不知道该选择哪本好了呢?今天我来为大家分享十本不可错过的Python好...

Django原生sql也能使用Paginator分页的示例代码

django-pagination这是一个python包,来自github上的一个项目,很容易用。 不过这是一个懒人工具,好吧(工具理性)。不过当一个页面有多处需要采用分页的话,就行不...

在Python中实现贪婪排名算法的教程

 在较早的一遍文章中,我曾经提到过我已经写了一个属于自己的排序算法,并且认为需要通过一些代码来重新回顾一下这个排序算法。 对于我所完成的工作,我核实并且保证微处理器的安全。对非...

Python(TensorFlow框架)实现手写数字识别系统的方法

Python(TensorFlow框架)实现手写数字识别系统的方法

手写数字识别算法的设计与实现 本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。这是本人的本科毕业论文课题,当然,这个也是机器...

python正则表达式re之compile函数解析

re正则表达式模块还包括一些有用的操作正则表达式的函数。下面主要介绍compile函数。 定义: compile(pattern[,flags] ) 根据包含正则表达式的字符串创...