python内存管理分析

yipeiwu_com6年前Python基础

本文较为详细的分析了python内存管理机制。分享给大家供大家参考。具体分析如下:

内存管理,对于Python这样的动态语言,是至关重要的一部分,它在很大程度上甚至决定了Python的执行效率,因为在Python的运行中,会创建和销毁大量的对象,这些都涉及到内存的管理。

小块空间的内存池

在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。

Python内存池全景

这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。这也就是之前提到的Pymalloc机制。

在Python 2.5中,Python内部默认的小块内存与大块内存的分界点定在256个字节,这个分界点由前面我们看到的名为SMALL_REQUEST_THRESHOLD的符号控制。

也就是说,当申请的内存小于256字节时,PyObject_Malloc会在内存池中申请内存;当申请的内存大于256字节时,PyObject_Malloc的行为将蜕化为malloc的行为。当然,通过修改Python源代码,我们可以改变这个默认值,从而改变Python的默认内存管理行为。

在一个对象的引用计数减为0时,与该对象对应的析构函数就会被调用。

但是要特别注意的是,调用析构函数并不意味着最终一定会调用free释放内存空间,如果真是这样的话,那频繁地申请、释放内存空间会使 Python的执行效率大打折扣(更何况Python已经多年背负了人们对其执行效率的不满)。一般来说,Python中大量采用了内存对象池的技术,使用这种技术可以避免频繁地申请和释放内存空间。因此在析构时,通常都是将对象占用的空间归还到内存池中。

"这个问题就是:Python的arena从来不释放pool。这个问题为什么会引起类似于内存泄漏的现象呢。考虑这样一种情形,申请10*1024*1024个16字节的小内存,这就意味着必须使用160M的内存,由于Python没有默认将前面提到的限制内存池的WITH_MEMORY_LIMITS编译符号打开,所以Python会完全使用arena来满足你的需求,这都没有问题,关键的问题在于过了一段时间,你将所有这些16字节的内存都释放了,这些内存都回到arena的控制中,似乎没有问题。

但是问题恰恰就在这时出现了。因为arena始终不会释放它维护的pool集合,所以这160M的内存始终被Python占用,如果以后程序运行中再也不需要160M如此巨大的内存,这点内存岂不是就浪费了?"

Python内存管理规则:del的时候,把list的元素释放掉,把管理元素的大对象回收到py对象缓冲池里。

希望本文所述对大家的Python程序设计有所帮助。

相关文章

使用python实现knn算法

使用python实现knn算法

本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下 knn算法描述 对需要分类的点依次执行以下操作: 1.计算已知类别数据集中每个点与该点之间的距离 2....

python模拟登录百度代码分享(获取百度贴吧等级)

复制代码 代码如下:# -*- coding: utf8 -*-'''Created on 2013-12-19 @author: good-temper''' import urlli...

pandas数据处理基础之筛选指定行或者指定列的数据

pandas数据处理基础之筛选指定行或者指定列的数据

pandas主要的两个数据结构是:series(相当于一行或一列数据机构)和DataFrame(相当于多行多列的一个表格数据机构)。 本文为了方便理解会与excel或者sql操作行或列来...

python 集合 并集、交集 Series list set 转换的实例

set转成list方法如下: list转成set方法如下: s = set('12342212')       &n...

Python 字符串操作实现代码(截取/替换/查找/分割)

Python 截取字符串使用 变量[头下标:尾下标],就可以截取相应的字符串,其中下标是从0开始算起,可以是正数或负数,下标可以为空表示取到头或尾。 复制代码 代码如下:# 例1:字符串...