Python中decorator使用实例

yipeiwu_com5年前Python基础

在我以前介绍 Python 2.4 特性的Blog中已经介绍过了decorator了,不过,那时是照猫画虎,现在再仔细描述一下它的使用。

关于decorator的详细介绍在 Python 2.4中的What's new中已经有介绍,大家可以看一下。

如何调用decorator

基本上调用decorator有两种形式

第一种:

复制代码 代码如下:

@A
def f ():

这种形式是decorator不带参数的写法。最终 Python 会处理为:

复制代码 代码如下:

f = A(f)

还可以扩展成:
复制代码 代码如下:

@A
@B
@C
def f ():
   

最终 Python 会处理为:

复制代码 代码如下:

f = A(B(C(f)))

注:文档上写的是@A @B @C的形式,但实际上是不行的,要写成多行。而且执行顺序是按函数调用顺序来的,先最下面的C,然后是B,然后是A。因此,如果decorator有顺序话,一定要注意:先要执行的放在最下面,最后执行的放在最上面。(应该不存在这种倒序的关系)

第二种:

复制代码 代码如下:

@A(args)
def f ():
   

这种形式是decorator带参数的写法。那么 Python 会处理为:

复制代码 代码如下:

def f():
_deco = A(args)
f = _deco(f)

可以看出, Python 会先执行A(args)得到一个decorator函数,然后再按与第一种一样的方式进行处理。

decorator函数的定义

每一个decorator都对应有相应的函数,它要对后面的函数进行处理,要么返回原来的函数对象,要么返回一个新的函数对象。请注意,decorator只用来处理函数和类方法。

第一种:
针对于第一种调用形式

复制代码 代码如下:

def A(func):
    #处理func
    #如func.attr='decorated'
    return func
@A
def f(args):pass

上面是对func处理后,仍返回原函数对象。这个decorator函数的参数为要处理的函数。如果要返回一个新的函数,可以为:

复制代码 代码如下:

def A(func):
    def new_func(args):
        #做一些额外的工作
        return func(args) #调用原函数继续进行处理
    return new_func
@A
def f(args):pass

要注意 new_func的定义形式要与待处理的函数相同,因此还可以写得通用一些,如:

复制代码 代码如下:

def A(func):
    def new_func(*args, **argkw):
        #做一些额外的工作
        return func(*args, **argkw) #调用原函数继续进行处理
    return new_func
@A
def f(args):pass

可以看出,在A中定义了新的函数,然后A返回这个新的函数。在新函数中,先处理一些事情,比如对参数进行检查,或做一些其它的工作,然后再调原始的函数进行处理。这种模式可以看成,在调用函数前,通过使用decorator技术,可以在调用函数之前进行了一些处理。如果你想在调用函数之后进行一些处理,或者再进一步,在调用函数之后,根据函数的返回值进行一些处理可以写成这样:

复制代码 代码如下:

def A(func):
    def new_func(*args, **argkw):
        result = func(*args, **argkw) #调用原函数继续进行处理
        if result:
            #做一些额外的工作
            return new_result
        else:
            return result
    return new_func
@A
def f(args):pass

第二种:
针对第二种调用形式

在文档上说,如果你的decorator在调用时使用了参数,那么你的decorator函数只会使用这些参数进行调用,因此你需要返回一个新的decorator函数,这样就与第一种形式一致了。

复制代码 代码如下:

def A(arg):
    def _A(func):
        def new_func(args):
            #做一些额外的工作
            return func(args)
        return new_func
    return _A
@A(arg)
def f(args):pass

可以看出A(arg)返回了一个新的 decorator _A。

decorator的应用场景

不过我也一直在想,到底decorator的魔力是什么?适合在哪些场合呢?是否我需要使用它呢?

decorator的魔力就是它可以对所修饰的函数进行加工。那么这种加工是在不改变原来函数代码的情况下进行的。有点象我知道那么一点点的AOP(面向方面编程)的想法。

它适合的场合我能想到的列举出下:

1.象文档中所说,最初是为了使调用staticmethod和classmethod这样的方法更方便
2.在某些函数执行前做一些工作,如web开发中,许多函数在调用前需要先检查一下用户是否已经登录,然后才能调用
3.在某此函数执行后做一些工作,如调用完毕后,根据返回状态写日志
4.做参数检查

可能还有许多,你可以自由发挥想象

那么我需要用它吗?

我想那要看你了。不过,我想在某些情况下,使用decorator可以增加程序的灵活性,减少耦合度。比如前面所说的用户登录检查。的确可以写一个通用的登录检查函数,然后在每个函数中进行调用。但这样会造成函数不够灵活,而且增加了与其它函数之间的结合程度。如果用户登录检查功能有所修改,比如返回值的判断发生了变化,有可能每个用到它的函数都要修改。而使用decorator不会造成这一问题。同时使用decorator的语法也使得代码简单,清晰(一但你熟悉它的语法的话)。当然你不使用它是可以的。不过,这种函数之间相互结合的方式,更符合搭积木的要求,它可以把函数功能进一步分解,使得功能足够简单和单一。然后再通过decorator的机制灵活的把相关的函数串成一个串,这么一想,还真是不错。比如下面:

复制代码 代码如下:

@A
@B
def account(args):pass

假设这是一个记帐处理函数,account只管记帐。但一个真正的记帐还有一些判断和处理,比如:B检查帐户状态,A记日志。这样的效果其实是先检查B、通过在A中的处理可以先执行account,然后再进行记日志的处理。象搭积木一样很方便,改起来也容易。甚至可以把account也写成decorator,而下面执行的函数是一个空函数。然后再通过配置文件等方法,将decorator的组合保存起来,就基本实现功能的组装化。是不是非常理想。

Python 带给人的创造力真是无穷啊!

相关文章

详解如何减少python内存的消耗

详解如何减少python内存的消耗

Python 打算删除大量涉及像C和C++语言那样的复杂内存管理。当对象离开范围,就会被自动垃圾收集器回收。然而,对于由 Python 开发的大型且长期运行的系统来说,内存管理是不容小觑...

利用标准库fractions模块让Python支持分数类型的方法详解

前言 你可能不需要经常处理分数,但当你需要时,Python的Fraction类会给你很大的帮助。本文将给大家详细介绍关于利用标准库fractions模块让Python支持分数类型的相关内...

Python实现的计算马氏距离算法示例

Python实现的计算马氏距离算法示例

本文实例讲述了Python实现的计算马氏距离算法。分享给大家供大家参考,具体如下: 我给写成函数调用了 python实现马氏距离源代码: # encoding: utf-8 fro...

Python实现通讯录功能

说实话,第一次写这么长的Python代码,期间遇到了很多问题,但是,最终还是完成了,花了我一天半的时间。 该程序实现了用户的增,删,改,查,主要用到sqlite3模块。对于该模块的知识点...

Python网页解析利器BeautifulSoup安装使用介绍

Python网页解析利器BeautifulSoup安装使用介绍

python解析网页,无出BeautifulSoup左右,此是序言 安装 BeautifulSoup4以后的安装需要用eazy_install,如果不需要最新的功能,安装版本3就够了,千...