简单介绍Python中的JSON使用

yipeiwu_com5年前Python基础

JSON进阶

Python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化:

import json

class Student(object):
  def __init__(self, name, age, score):
    self.name = name
    self.age = age
    self.score = score

s = Student('Bob', 20, 88)
print(json.dumps(s))

运行代码,毫不留情地得到一个TypeError:

Traceback (most recent call last):
 ...
TypeError: <__main__.Student object at 0x10aabef50> is not JSON serializable

错误的原因是Student对象不是一个可序列化为JSON的对象。

如果连class的实例对象都无法序列化为JSON,这肯定不合理!

别急,我们仔细看看dumps()方法的参数列表,可以发现,除了第一个必须的obj参数外,dumps()方法还提供了一大堆的可选参数:

https://docs.python.org/2/library/json.html#json.dumps

这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps()方法不知道如何将Student实例变为一个JSON的{}对象。

可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:

def student2dict(std):
  return {
    'name': std.name,
    'age': std.age,
    'score': std.score
  }

print(json.dumps(s, default=student2dict))

这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON。

不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict:

print(json.dumps(s, default=lambda obj: obj.__dict__))

因为通常class的实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了__slots__的class。

同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:

def dict2student(d):
  return Student(d['name'], d['age'], d['score'])

json_str = '{"age": 20, "score": 88, "name": "Bob"}'
print(json.loads(json_str, object_hook=dict2student))

运行结果如下:

<__main__.Student object at 0x10cd3c190>

打印出的是反序列化的Student实例对象。
小结

Python语言特定的序列化模块是pickle,但如果要把序列化搞得更通用、更符合Web标准,就可以使用json模块。

json模块的dumps()和loads()函数是定义得非常好的接口的典范。当我们使用时,只需要传入一个必须的参数。但是,当默认的序列化或反序列机制不满足我们的要求时,我们又可以传入更多的参数来定制序列化或反序列化的规则,既做到了接口简单易用,又做到了充分的扩展性和灵活性。

相关文章

Python3.6简单的操作Mysql数据库的三个实例

安装pymysql 参考:https://github.com/PyMySQL/PyMySQL/ pip install pymsql 实例一 import pymysql # 创建...

Python获取CPU、内存使用率以及网络使用状态代码

由于psutil已更新到3.0.1版本,最新的代码如下: #!/usr/bin/env python import os import time import sys import...

Pandas DataFrame数据的更改、插入新增的列和行的方法

Pandas DataFrame数据的更改、插入新增的列和行的方法

一、更改DataFrame的某些值 1、更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据。 2、需要注意的是,数据更改直接针对DataFrame原数据更改,...

详谈pandas中agg函数和apply函数的区别

在利用python进行数据分析 这本书中其实没有明确表明这两个函数的却别,而是说apply更一般化. 其实在这本书的第九章‘数组及运算和转换'点到了两者的一点点区别:agg是用来聚合运算...

Python中使用logging模块代替print(logging简明指南)

替换print?print怎么了? print 可能是所有学习Python语言的人第一个接触的东西。它最主要的功能就是往控制台 打印一段信息,像这样: 复制代码 代码如下: print...