Python多进程并发(multiprocessing)用法实例详解

yipeiwu_com6年前Python基础

本文实例讲述了Python多进程并发(multiprocessing)用法。分享给大家供大家参考。具体分析如下:

由于Python设计的限制(我说的是咱们常用的CPython)。最多只能用满1个CPU核心。
Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。

1、新建单一进程

如果我们新建少量进程,可以如下:

import multiprocessing
import time
def func(msg):
  for i in xrange(3):
    print msg
    time.sleep(1)
if __name__ == "__main__":
  p = multiprocessing.Process(target=func, args=("hello", ))
  p.start()
  p.join()
  print "Sub-process done."

2、使用进程池

是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。

注意要用apply_async,如果落下async,就变成阻塞版本了。

processes=4是最多并发进程数量。

import multiprocessing
import time
def func(msg):
  for i in xrange(3):
    print msg
    time.sleep(1)
if __name__ == "__main__":
  pool = multiprocessing.Pool(processes=4)
  for i in xrange(10):
    msg = "hello %d" %(i)
    pool.apply_async(func, (msg, ))
  pool.close()
  pool.join()
  print "Sub-process(es) done."

3、使用Pool,并需要关注结果

更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:

import multiprocessing
import time
def func(msg):
  for i in xrange(3):
    print msg
    time.sleep(1)
  return "done " + msg
if __name__ == "__main__":
  pool = multiprocessing.Pool(processes=4)
  result = []
  for i in xrange(10):
    msg = "hello %d" %(i)
    result.append(pool.apply_async(func, (msg, )))
  pool.close()
  pool.join()
  for res in result:
    print res.get()
  print "Sub-process(es) done."

希望本文所述对大家的Python程序设计有所帮助。

相关文章

浅谈python连续赋值可能引发的错误

今天写的代码片段: X = Y = [] .. X.append(x) Y.append(y) 其中x和y是读取的每一个数据的xy值,打算将其归入列表之后绘散点图,但是绘图出来却是...

Python数据分析之双色球统计两个红和蓝球哪组合比例高的方法

Python数据分析之双色球统计两个红和蓝球哪组合比例高的方法

本文实例讲述了Python数据分析之双色球统计两个红和蓝球哪组合比例高的方法。分享给大家供大家参考,具体如下: 统计两个红球和蓝球,哪个组合最多,显示前19组数据 #!/usr/bi...

python版本五子棋的实现代码

python版本五子棋的实现代码

正文之前 前阵子做了个《人工智能》 的课程作业,然后写了个人工智障。。。大概就是个可以跟你下五子棋的傻儿子。。。下面是代码和效果 正文 1、 摘要 机器博弈是人工智能领域的重要分支,它...

Python基于lxml模块解析html获取页面内所有叶子节点xpath路径功能示例

本文实例讲述了Python基于lxml模块解析html获取页面内所有叶子节点xpath路径功能。分享给大家供大家参考,具体如下: 因为需要使用叶子节点的路径来作为特征,但是原始的lxml...

tensorflow识别自己手写数字

tensorflow识别自己手写数字

tensorflow作为google开源的项目,现在赶超了caffe,好像成为最受欢迎的深度学习框架。确实在编写的时候更能感受到代码的真实存在,这点和caffe不同,caffe通过编写配...