Python while、for、生成器、列表推导等语句的执行效率测试

yipeiwu_com5年前Python基础

一个功能的实现,可以用多种语句来实现,比如说:while语句、for语句、生成器、列表推导、内置函数等实现,然而他们的效率并不一样。写了一个小程序来测试它们执行的效率。

测试内容:
将一个数字大小为20万的数字,依次取绝对值,放到列表中,测试重复1千次.
测试程序:

复制代码 代码如下:

import time,sys 
reps = 1000                #测试重复次数 
nums = 200000              #测试时数字大小 
 
 
def tester(func,*args):    #总体测试函数 
    startTime = time.time() 
    for i in range(reps): 
        func(*args) 
    elapsed = time.time() - startTime #用time模块来测试,结束时间与开始时间差 
    return elapsed 
 
def while_Statement():     #while循环实现 
    res = [] 
    x   = 0 
    while nums > x: 
        x += 1 
        res.append(abs(x)) 
 
def for_Statement():       #for循环实现 
    res = [] 
    for x in range(nums): 
        res.append(abs(x)) 
 
def generator_Expression():#生成器实现 
    res = list(abs(x) for x in range(nums)) 
 
def list_Comprehension():  #列表解析实现 
    res = [abs(x) for x in range(nums)] 
 
 
def map_Function():        #内置函数map实现 
    res = map(abs, range(nums)) 
 
 
print sys.version          #打印系统版本 
tests = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function] 
for testfunc in tests:     #将待测函数放置列表中依次遍历 
    print testfunc.__name__.ljust(20),': ',tester(testfunc)  # 
 

测试结果:

复制代码 代码如下:

>>>  
2.7.4 (default, Apr  6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)] 
while_Statement      :  84.5769999027 
for_Statement        :  75.2709999084 
generator_Expression :  62.3519999981 
list_Comprehension   :  60.4090001583 
map_Function         :  47.5629999638 

改写程序:
复制代码 代码如下:

import sys 
nums = 100 
 
def while_Statement(): 
    res = [] 
    x   = 0 
    while nums > x: 
        x += 1 
        res.append(abs(x)) 
 
def for_Statement(): 
    res = [] 
    for x in range(nums): 
        res.append(abs(x)) 
 
def generator_Expression(): 
    res = list(abs(x) for x in range(nums)) 
 
def list_Comprehension(): 
    res = [abs(x) for x in range(nums)] 
 
 
def map_Function(): 
    res = map(abs, range(nums)) 
 
if __name__=='__main__': 
    import timeit            #用timeit模块来测试 
    print sys.version 
    funcs = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function] 
    for func in funcs: 
        print func.__name__.ljust(20),': ',timeit.timeit("func()", setup="from __main__ import func") 

测试结果:

复制代码 代码如下:

>>>  
2.7.4 (default, Apr  6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)] 
while_Statement      :  37.1800067428 
for_Statement        :  30.3999109329 
generator_Expression :  27.2597866441 
list_Comprehension   :  17.386223449 
map_Function         :  12.7386868963 

测试分析:

用time模块,和timeit模块两种测试方式测试了很多组数字,得出的结果是执行内置函数最快,其次就是列表推导,再其次生成器和for循环,while循环最慢。一般最快的使用内置函数的方法要比使用最慢的while快两倍以上。简单分析下原因:内置函数比如说map,filter,reduce(在Python3.0中移除)基本上都是用C语言来实现的,所以速度是最快的,列表推导内的迭代在解释器内是以C语言的速度运行的(一般是for循环的两倍,对大型文件操作而言,用列表推导效果尤其明显),相比较for循环代码是在PVM步进运行要快的多。但for循环里面含range(),相对速度也会快些,while语句是纯粹用Python代码写成,所以速度最慢。所以函数式编程最好使用内置函数,然后才考虑使用列表推导或for循环。最好不用while循环.

相关文章

django-filter和普通查询的例子

pythong在使用中,尤其是django的查询过程中插件还是不少的,最近发现了一个插件django-filter ,还挺好用的 1.最原始直接根据条件查询 def search(r...

Python学习笔记之For循环用法详解

本文实例讲述了Python学习笔记之For循环用法。分享给大家供大家参考,具体如下: Python 中的For循环 Python 有两种类型的循环:for 循环和 while 循环。fo...

python网络编程学习笔记(一)

学习用书:《python 网络编程基础》作者John Goerzen 第一部分底层网络学习         Pyth...

Python求算数平方根和约数的方法汇总

一、求算术平方根 a= x=int(raw_input('Enter a number:')) if x >= : while a*a < x: a = a + i...

Python中的引用和拷贝实例解析

Python中的引用和拷贝实例解析

这篇文章主要介绍了python中的引用和拷贝实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.引用 a = ['a',...