Python合并两个字典的常用方法与效率比较

yipeiwu_com5年前Python基础

本文实例讲述了Python合并两个字典的常用方法与效率比较。分享给大家供大家参考。具体分析如下:

下面的代码举例了5种合并两个字典的方法,并且做了个简单的性能测试

#!/usr/bin/python 
import time 
def f1(d1, d2): 
  return dict(d1, **d2) 
def f2(d1, d2): 
  return dict(d1.items() + d2.items()) 
def f3(d1, d2): 
  d = d1.copy() 
  d.update(d2) 
  return d 
def f4(d1, d2): 
  d1.update(d2) 
  return d1 
def f5(d1, d2): 
  d = dict(d1) 
  d.update(d2) 
  return d 
def f6(d1, d2): 
  return (lambda a, b: (lambda a_copy: a_copy.update(b) or a_copy)(a.copy()))(d1, d2) 
def f7(d1, d2): 
  d = {} 
  d.update(d1) 
  d.update(d2) 
  return d 
def t(f, n): 
  st = time.time() 
  for i in range(1000000): 
    dic1 = {'a':'AA','b':'BB','c':'CC'} 
    dic2 = {'A':'aa','B':'bb','C':'cc'} 
    f(dic1, dic2) 
  et = time.time() 
  print '%s cost:%s'%(n, et-st) 
t(f1, 'f1') 
t(f2, 'f2') 
t(f3, 'f3') 
t(f4, 'f4') 
t(f5, 'f5') 
t(f6, 'f6') 
t(f7, 'f7') 

除了f4方法会对字典d1造成破坏性修改之外,另外的几种方法都是把合并的结果作为新的字典返回。

下面是测试结果:

f1 cost:2.382999897 
f2 cost:4.45399999619 
f3 cost:3.02100014687 
f4 cost:1.73000001907 
f5 cost:2.3710000515 
f6 cost:2.89700007439 
f7 cost:2.35600018501 

可以看出f4最为高效,如果不需要保留原字典的话推荐使用f4方法。

希望本文所述对大家的Python程序设计有所帮助。

相关文章

python实现定时压缩指定文件夹发送邮件

工作中每天需要收集部门内的FR文件,发送给外部部门的同事帮忙上传,这么发了有大半年,昨天亮光一闪,为什么不做成自动化呢,于是用python实现了整个流程,今天体验了一下真是美滋滋。 代码...

python 按照固定长度分割字符串的方法小结

有如下的一堆mac地址,需要更改成一定格式,如mac='902B345FB021'改为mac='90-2B-34-5F-B0-21'。 借助python脚本,可以轻松实现,原理就是:字符...

Python中使用MELIAE分析程序内存占用实例

写的dht协议搜索的程序,这几天优化了一下发现速度确实快了好多。但是出现了一个新的问题,内存直接飙升,我开了十个爬虫占用内存800m。开始我以为是节点太多了,找了几个小问题修改一下,发现...

在Python中使用模块的教程

Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用。 我们以内建的sys模块为例,编写一个hello的模块: #!/usr/bin/env python...

Python使用Flask框架同时上传多个文件的方法

本文实例讲述了Python使用Flask框架同时上传多个文件的方法,分享给大家供大家参考。具体如下: 下面的演示代码带有详细的html页面和python代码 import os #...