Python合并两个字典的常用方法与效率比较

yipeiwu_com5年前Python基础

本文实例讲述了Python合并两个字典的常用方法与效率比较。分享给大家供大家参考。具体分析如下:

下面的代码举例了5种合并两个字典的方法,并且做了个简单的性能测试

#!/usr/bin/python 
import time 
def f1(d1, d2): 
  return dict(d1, **d2) 
def f2(d1, d2): 
  return dict(d1.items() + d2.items()) 
def f3(d1, d2): 
  d = d1.copy() 
  d.update(d2) 
  return d 
def f4(d1, d2): 
  d1.update(d2) 
  return d1 
def f5(d1, d2): 
  d = dict(d1) 
  d.update(d2) 
  return d 
def f6(d1, d2): 
  return (lambda a, b: (lambda a_copy: a_copy.update(b) or a_copy)(a.copy()))(d1, d2) 
def f7(d1, d2): 
  d = {} 
  d.update(d1) 
  d.update(d2) 
  return d 
def t(f, n): 
  st = time.time() 
  for i in range(1000000): 
    dic1 = {'a':'AA','b':'BB','c':'CC'} 
    dic2 = {'A':'aa','B':'bb','C':'cc'} 
    f(dic1, dic2) 
  et = time.time() 
  print '%s cost:%s'%(n, et-st) 
t(f1, 'f1') 
t(f2, 'f2') 
t(f3, 'f3') 
t(f4, 'f4') 
t(f5, 'f5') 
t(f6, 'f6') 
t(f7, 'f7') 

除了f4方法会对字典d1造成破坏性修改之外,另外的几种方法都是把合并的结果作为新的字典返回。

下面是测试结果:

f1 cost:2.382999897 
f2 cost:4.45399999619 
f3 cost:3.02100014687 
f4 cost:1.73000001907 
f5 cost:2.3710000515 
f6 cost:2.89700007439 
f7 cost:2.35600018501 

可以看出f4最为高效,如果不需要保留原字典的话推荐使用f4方法。

希望本文所述对大家的Python程序设计有所帮助。

相关文章

PyTorch 1.0 正式版已经发布了

PyTorch 1.0 同时面向产品化 AI 和突破性研究的发展,「我们在 PyTorch1.0 发布前解决了几大问题,包括可重用、性能、编程语言和可扩展性。」Facebook 人工智能...

Windows系统Python直接调用C++ DLL的方法

环境:Window 10,VS 2019, Python 2.7.12, 64bit 1,打开 VS 2019,新建C++ Windows 动态链接库工程 Example,加入下列文件,...

详解python的四种内置数据结构

对于每种编程语言一般都会规定一些容器来保存某些数据,就像java的集合和数组一样python也同样有这样的结构 而对于python他有四个这样的内置容器来存储数据,他们都是python语...

Python控制Firefox方法总结

Python控制Firefox方法总结

有时候为了自动化测试网页,我们往往希望能够使用一些脚本语言控制浏览器. 通过脚本模拟一些浏览器动作,然后测试得到的结果.这里, 我们讲解一下如何使用Python语言控制Firefox浏览...

pytorch: Parameter 的数据结构实例

一般来说,pytorch 的Parameter是一个tensor,但是跟通常意义上的tensor有些不一样 1) 通常意义上的tensor 仅仅是数据 2) 而Parameter所对应的...