Python中list列表的一些进阶使用方法介绍

yipeiwu_com5年前Python基础

判断一个 list 是否为空

传统的方式:

if len(mylist):
  # Do something with my list
else:
  # The list is empty

由于一个空 list 本身等同于 False,所以可以直接:

if mylist:
  # Do something with my list
else:
  # The list is empty

遍历 list 的同时获取索引

传统的方式:

i = 0
for element in mylist:
  # Do something with i and element
  i += 1

这样更简洁些:

for i, element in enumerate(mylist):
  # Do something with i and element
  pass

list 排序

在包含某元素的列表中依据某个属性排序是一个很常见的操作。例如这里我们先创建一个包含 person 的 list:

class Person(object):
  def __init__(self, age):
    self.age = age

persons = [Person(age) for age in (14, 78, 42)]

传统的方式是:

def get_sort_key(element):
  return element.age

for element in sorted(persons, key=get_sort_key):
  print "Age:", element.age

更加简洁、可读性更好的方法是使用 Python 标准库中的 operator 模块:

from operator import attrgetter

for element in sorted(persons, key=attrgetter('age')):
  print "Age:", element.age

attrgetter 方法优先返回读取的属性值作为参数传递给 sorted 方法。operator 模块还包括 itemgetter 和 methodcaller 方法,作用如其字面含义。

list解析

python有一个非常有意思的功能,就是list解析,就是这样的:

>>> squares = [x**2 for x in range(1,10)]
>>> squares
[1, 4, 9, 16, 25, 36, 49, 64, 81]

看到这个结果,看官还不惊叹吗?这就是python,追求简洁优雅的python!

其官方文档中有这样一段描述,道出了list解析的真谛:

    List comprehensions provide a concise way to create lists. Common applications are to make new lists where each element is the result of some operations applied to each member of another sequence or iterable, or to create a subsequence of those elements that satisfy a certain condition.

还记得前面一讲中的那个问题吗?

    找出100以内的能够被3整除的正整数。

我们用的方法是:

aliquot = []

for n in range(1,100):
  if n%3 == 0:
    aliquot.append(n)

print aliquot

好了。现在用list解析重写,会是这样的:

>>> aliquot = [n for n in range(1,100) if n%3==0]
>>> aliquot
[3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99]

震撼了。绝对牛X!

其实,不仅仅对数字组成的list,所有的都可以如此操作。请在平复了激动的心之后,默默地看下面的代码,感悟一下list解析的魅力。

>>> mybag = [' glass',' apple','green leaf ']  #有的前面有空格,有的后面有空格
>>> [one.strip() for one in mybag]       #去掉元素前后的空格
['glass', 'apple', 'green leaf']

enumerate

这是一个有意思的内置函数,本来我们可以通过for i in range(len(list))的方式得到一个list的每个元素编号,然后在用list[i]的方式得到该元素。如果要同时得到元素编号和元素怎么办?就是这样了:

>>> for i in range(len(week)):
...   print week[i]+' is '+str(i)   #注意,i是int类型,如果和前面的用+连接,必须是str类型
... 
monday is 0
sunday is 1
friday is 2

python中提供了一个内置函数enumerate,能够实现类似的功能

>>> for (i,day) in enumerate(week):
...   print day+' is '+str(i)
... 
monday is 0
sunday is 1
friday is 2

算是一个有意思的内置函数了,主要是提供一个简单快捷的方法。

官方文档是这么说的:

    Return an enumerate object. sequence must be a sequence, an iterator, or some other object which supports iteration. The next() method of the iterator returned by enumerate() returns a tuple containing a count (from start which defaults to 0) and the values obtained from iterating over sequence:

顺便抄录几个例子,供看官欣赏,最好实验一下。

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']
>>> list(enumerate(seasons))
[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list(enumerate(seasons, start=1))
[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

相关文章

深入理解python中的闭包和装饰器

深入理解python中的闭包和装饰器

python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure)。 以下说明主要针对...

利用python实现简单的循环购物车功能示例代码

本文主要给大家介绍了关于python实现循环购物车功能的相关内容,分享出来供大家参考学习,下面来一起看看详细的介绍: 示例代码 # -*- coding: utf-8 -*- __a...

Python实现的购物车功能示例

Python实现的购物车功能示例

本文实例讲述了Python实现的购物车功能。分享给大家供大家参考,具体如下: 这里尝试用python实现简单的购物车程序。。。 基本要求: 用户输入工资,然后打印购物菜单 用户可以不断的...

Python基于回溯法解决01背包问题实例

Python基于回溯法解决01背包问题实例

本文实例讲述了Python基于回溯法解决01背包问题。分享给大家供大家参考,具体如下: 同样的01背包问题,前面采用动态规划的方法,现在用回溯法解决。回溯法采用深度优先策略搜索问题的解,...

python+pillow绘制矩阵盖尔圆简单实例

python+pillow绘制矩阵盖尔圆简单实例

本文主要研究的是使用Python+pillow绘制矩阵盖尔圆的一个实例,具体如下。 盖尔圆是矩阵特征值估计时常用的方法之一,其定义为: 与盖尔圆有关的两个定理为: 定理1:矩阵A的所有特...